Journal of Applied Mathematics and Computation

DOI：http://dx.doi.org/10.26855/jamc.2021.12.005

Date: November 3,2021 Hits: 320

Sequence spaces play a good role in summability fields in analysis. It was Kizmaz in H. Kizmaz, who introduced the concept of difference sequences spaces on ʆ_{∞}, *c* and *c*_{0} where ʆ_{∞}* c* and *c*_{0} represents space of all bounded sequences, space of convergent sequence and the sequences converging to zero. In certain cases, the most general linear operator between two sequence spaces is given by an infinite matrix. So the theory of matrix transformations has always been of great interest in the study of sequence spaces. The sequences which were studied by Kizmaz were later studied by many authors and introduced different spaces. The authors in A. H. Ganie, et al. have recently studied the spaces* bv _{c} (g,p)* and

[1] I. J. Maddox. (1967). Spaces of strongly summable sequences. Quart. J. Math. Oxford, 18(2), 345-355.

[2] B. Altay and F. Basar. (2003). On the space of sequences of p-bounded variation and related matrix mappings. Ukarnian Math. J., 1(1), 136-147.

[3] D. Fathima and A. H. Ganie. (2021). On some new scenario of Delta-spaces. Journal of Nonlinear Sciences and Applications, 14 (2021), 163-167.

[4] A. H. Ganie and N. A. Sheikh. (2013). On some new sequence space of non-absolute type and matrix transformations. J. Egypt. Math. Soc., (2013), 34-40.

[5] K. G. Gross Erdmann. (1993). Matrix transformations between the sequence spaces of Maddox. J. Math. Anal. Appl., 180(1993), 223-238.

[6] I. J. Maddox. (1968). Paranormed sequence spaces generated by infinite matrices. Proc. Camb. Phil. Soc., 64(1968), 335-340.

[7] M. Mursaleen, A. H. Ganie, and N. A. Sheikh. (2014). New type of difference sequenence spaces and matrix transformation. Filomat, 28(7), 1381-1392.

[8] N. A. Sheikh and A. H. Ganie. (2012). A new paranormed sequence space and some matrix transformations. Acta Math. Acad. Paeda. Nyregy., 28(2012), 47-58.

[9] H. Kizmaz. (1981). On certain sequence, Canad. Math. Bull., 24(2), 169-176.

[10] A. H. Ganie. (2021). Some new approach of spaces of non-integral order. J. Nonlinear Sci, Appl., 14(2), 89-96.

[11] A. H. Ganie and D. Fathima. (2020). Almost convergence property of generalized Riesz spaces. Journal of Applied Mathematics and Computation, 4(4), 249-253.

[12] A. H. Ganie and N. A. Sheikh. (2015). Infinite matrices and almost convergence. Filomat, 29(6), 1183-1188.

[13] A. H. Ganie, N. A. Sheikh, and T. Jalal. (2015). Matrix transformations of some sequence spaces over non-archmedian fields. J. Appl. Computat. Math., (4), 1-3.

[14] A. H. Ganie, N. A. Sheikh, and T. Jalal. (2015). On some new spaces of invariant means with respect to modulus function, The inter. Jou. Modern Math. Sciences, USA, 13(3), 210-216.

[15] A. H. Ganie, N. A. Sheikh, and T. Jalal. (2014). New type of sequence spaces and matrix transformations. The inter. Jou. Modern Math. Sciences, USA, 10(3), 125-129.

[16] A. H. Ganie, Mobin Ahmad, N. A. Sheikh, T. Jalal, and S. A. Gupkari. (2016). Some new type of difference se-quence space of non-absolute type, Int. J. Modern Math. Sci., 14(1), 116-122.

[17] A. H. Ganie. New spaces over modulus function. Boletim da Sociedade Paranaense de Matemática (in press), 1-6.

[18] P. A. Naik and T. A. Tarry. Matrix Representation of an All-inclusive Fibonacci Sequence. Asian J. Math. Stat., 11(1), 18-26.

[19] N. A. Sheikh and A. H. Ganie. (2013). New paranormed sequence space and some matrix transformations. Int. J. Mod. Math. Sci., 8(2), 185-194.

**New Type of Paranormed Behaviour of Spaces**

**How to cite this paper:** Abdul Hamid Ganie, Mashael M. AlBaidani. (2021) New Type of Paranormed Behaviour of Spaces. *Journal of Applied Mathematics and Computation*, **5**(**4**), 273-276.

**DOI: http://dx.doi.org/10.26855/jamc.2021.12.005**

Copyright © 2020 Hill Publishing Group Inc.

All Rights Reserved.