Location:Home / Journals / Article Detail

Journal of Applied Mathematics and Computation

DOI:http://dx.doi.org/10.26855/jamc.2021.12.007

PDF Download

A Reissner-Nordström+Λ Black Hole in the Friedman-Robertson-Walker Universe

Safiqul Islam1,*, Priti Mishra2, Somi Aktar3, Farook Rahaman3

1Department of Mathematics, St. Theresa International College, 1 Moo 6, Rangsit-Nakornnayok Road, Klong 14, Bueng San, Ongkharak, Nakhon Nayok 26120, Thailand.

2Department of Physics, Magadh Mahila College, Patna University, Patna, Bihar, India.

3Department of Mathematics, Jadavpur University, Kolkata-700 032, West Bengal, India.

*Corresponding author: Safiqul Islam

Date: November 15,2021 Hits: 350

Abstract

A charged, non-rotating, spherically symmetric black hole which has cosmological constant Λ (Reissner-Nordström+Λ or RN+Λ), active gravitational mass M and electric charge Q is studied in exterior Friedman-Robertson-Walker (FRW) universe in (2+1) dimensional spacetime. We find new class of exact solutions of the charged black hole. It is found that the cosmological constant is negative inside the black hole. We confirm it from the geodesic equations too. The cosmological constant is found to be dependent on R, Q and a(v) which correspond to the areal radius, charge, of the black hole and the scale factor of the universe respectively. We note that the expansion of the universe affects the size and the mass of the black hole. An important observation is that, for an observer at infinity, both the mass and charge of black hole increase with the contraction of the universe and decrease with the expansion of the universe.

References

[1] M. Bañados, C. Teitelboim, and J. Zanelli.  (1992).  Phys.  Rev. Lett. 69, 1849 (1992). 

[2] C. Martinez, C. Teitelboim, and J. Zanelli.  (1992).  Phys.  Rev. D 61, 104013 (2000). 

[3] K. C. K. Chan and R. B. Mann.  (1994).  Phys.  Rev. D 50, 6385 (1994). 

[4] V. T. Zanchin, A. Kleber, and J. P. S. Lemos.  (2002).  Phys.  Rev. D, 66, 064022 (2002). 

[5] V. T. Zanchin and A. S. Miranda.  (2004).  Class.  Quantum Grav. , 21, 875897 (2004). 

[6] O. Gurtug, S. Habib Mazharimousavi, and M. Halilsoy.  (2012).  Phys.  Rev. D 85, 104004 (2012). 

[7] G. C. Mc Vittie.  (1933).  Mon Not R Astron Soc. , 93, 325-339 (1933). 

[8] D. Kastor and J. Traschen.  (1993).  Phys.  Rev. D, 47, 480 (1993). 

[9] D. Kastor and J. Traschen J. (1993).  Phys.  Rev. D, 47, 5370 (1993). 

[10] T. Shiromizu and U. Gen. (2001).  Class.  Quantum Grav. , 17, 1361 (2001). 

[11] K. R. Nayak, M. A. H. MacCallum, and C. V. Vishveshvara.  (2000).  Phys.  Rev. D, 63, 024020 (2000). 

[12] K. R. Nayak and C. V. Vishveshvara.  (2000).  “Geometry of the Kerr Black Hole in the Einstein Cosmological Back- ground, report (2000). 

[13] C. J. Gao, S. N. Zhang.  (2004).  Phys.  Lett.  B, 595, 28 (2004). 

[14] Raphael Bousso, arXiv: 1203.0307. 

[15] Nemanja Kaloper, Matthew Kleban, and Damien Martin.  (2010).  Phys.  Rev. D, 81, 104044 (2010). 

[16] T. Maki and K. Shiraishi, Class.  (1993).  Quantum Grav. , 10, 2171 (1993). 

[17] F. Kottler, Ann.  Phys.  (Berlin), 56, 401 (1918);  H. Weyl, Phys.  Z., 20, 31 (1919);  K. Lake, Phys.  Rev. D, 19, 421 (1979)];  B. Carter, in Black Holes, edited by C. DeWitt and B. S. DeWitt [Gordon and Breach, New York, 1973]. 

[18] Valeri P. Frolov, Andrei Zelnikov.  (2011).  Introduction to Black Hole Physics-Oxford University Press (2011). 

[19] A. A. Usmani, et al. (2011).  Physics Letters B 701, 388-392 (2011). 

[20] Kei-ichi Maeda and Nobuyoshi Ohta.  (2014).  J. High Energ.  Phys. , 06, 095 (2014). 

[21] N. Sen, Ann.  Phys.  (Leipzig), 378, 365 (1924);  K. Lanczos, Ann.  Phys.  (Leipzig), 379, 518 (1924);  G. Darmois, Mémorial des Sciences Mathématiques, Fascicule XXV (Gauthier-Villars, Paris, 1927), Chap. 5;  W. Israel, Nuovo Cimento, 44B, 1 (1966);  48, 463(E) (1967).  G.P. Perry, R.B. Mann, Gen. Rel. Gravit. , 24, 305 (1992). 

[22] A. Papapetrou and A. Hamoui.  (1968).  Ann.  Inst. Henri Poincaré, 9 179 (1968). 

[23] J. P. S. Lemos and V. T. Zanchin.  (2011).  Phys.  Rev. D, 83, 12 (2011). 

[24] F. Rahaman, A. Banerjee, and I. Radinschi.  (2012).  Int.  J. Theor.  Phys. , 51, 1680-1691 (2012). 

[25] A. Banerjee.  (2013).  Int.  J. Theor.  Phys. , 52, 2943-2958 (2013). 

[26] A. Övgün and I. Sakalli.  (2017).  Theor.  Math.  Phys. , 190(1), 120 (2017). 

[27] S. H. Mazharimousavi, Z. Amirabi, and M. Halilsoy.  (2017).  Mod. Phys.  Lett.  A, 32, 10 (2017). 

[28] C. Bejarano, E. F. Eiroa, and C. Simeone.  (2014).  Eur.  Phys.  J. C., 74, 3015 (2014). 

[29] Philippe Landry, Majd Abdelqader, and Kayll Lake.  (2012).  Phys.  Rev. D, 86, 084002 (2012).

Full-Text HTML

A Reissner-Nordström+Λ Black Hole in the Friedman-Robertson-Walker Universe

How to cite this paper: Safiqul Islam, Priti Mishra, Somi Aktar, Farook Rahaman. (2021) A Reissner-Nordström+Λ Black Hole in the Friedman-Robertson-Walker Universe. Journal of Applied Mathematics and Computation5(4), 283-302.

DOI: http://dx.doi.org/10.26855/jamc.2021.12.007