JAMC

Article 10.26855/jamc.2018.11.002

Statistical Hypo-Convergence in Sequences of Functions

TOTAL VIEWS: 5098

Şükrü Tortop

Department of Mathematics, Faculty of Art and Sciences, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey.

*Corresponding author: Şükrü Tortop

Published: November 30,2018

Abstract

In this paper, we define statistical hypo-convergence in metric spaces as an alternative to statistical pointwise and uniform statistical convergence. We show that this type of convergence provides a useful tool for solving stochastic optimization and variational problems. Also, its characterizations with level sets are obtained.

References

[1] Anastassiou, A. G., Duman O.: Towards Intelligent Modeling: Statistical Approximation Theory, vol.14. Berlin (2011)

[2] Attouch, H.: Convergence de fonctions convexes, de sous-differentiels et semi-groupes. Comptes Rendus de lAcademie des Sciences de Paris. 284 539-542 (1977)

[3] Das, R., Papanastassiou, N.: Some types of convergence of sequences of real valued functions. Real Anal. Exchange 28 (2) 1-16 (2002/2003)

[4] Di Maio, G., Kocinac, Lj. D. R.: Statistical convergence in topology. Topology Appl. 156 28-45 (2008)

[5] Fast, H.: Sur la convergence statistique. Colloq. Math. 2 241-244 (1951)

[6] Fridy, J. A., Orhan, C.: Statistical limit superior and limit inferior. Proc. Amer. Math. Soc.125 3625-3631 (1997)

[7] Gokhan, A., Gungor, M.: On pointwise statistical convergence. Indian J. pure appl. Math.33 (9) 1379-1384 (2002)

[8] Joly, J.-L.: Une famille de topologies sur lensemble des fonctions convexes pour lesquelles la polarite est bicontinue. Journal de Mathematiques Pures et Appliquees. 52 421-441 (1973)

[9] Kuratowski, C.: Topologie, vol.I. PWN, Warszawa (1958)

[10] Maso, G. D.: An introduction to -convergence, vol.8. Boston (1993)

[11] McLinden, L., Bergstrom, R.: Preservation of convergence of sets and functions infinite dimensions. Trans. Amer. Math. Soc 268 127-142 (1981)

[12] Mosco, U.: Convergence of convex sets and of solutions of variational inequalities. Adv. Math.3 510-585 (1969)

[13] Niven, I., Zuckerman, H. S.: An Introduction to the Theory of Numbers. New York (1980)

[14] Papanastassiou, N.: On a new type of convergence of sequences of functions. Atti Sem. Mat. Fis. Univ. Modena 50 493-506 (2002)

[15] Rockafellar, R.T., Wets, R.J-B.: Variational Analysis. (2009)

[16] Salat, T.: On statistically convergent sequences of real numbers. Math. Slovaca 30 139-150(1980)

[17] Salinetti, G., Wets, R.J-B.: On the relation between two types of convergence for convex functions. J. Math. Anal. Appl. 60 211-226 (1977)

[18] Talo, O., Sever, Y., Basar, F.: On statistically convergent sequences of closed sets. Filomat. 30 (6) 1497-1509 (2016)

[19] Wets, R.J-B.: Convergence of convex functions, variational inequalities and convex optimization problems. New York (1980)

[20] Wijsman, R. A.: Convergence of sequences of convex sets, cones and functions. Bull. Amer. Math. Soc. 70 186-188 (1964)

[21] Wijsman, R. A.: Convergence of sequences of convex sets, cones and functions II. Trans. Amer. Math. Soc. 123 32-45 (1966)

How to cite this paper

Statistical Hypo-Convergence in Sequences of Functions

How to cite this paper: Şükrü Tortop. (2018) Statistical Hypo-Convergence in Sequences of FunctionsJournal of Applied Mathematics and Computation2(11), 504-512.

DOI: http://dx.doi.org/10.26855/jamc.2018.11.002