TOTAL VIEWS: 1300
Perovskite type material BaCe0.65Zr0.10Y0.05Pr0.20O3-δ was synthesized by the conventional solid-state reaction method with a sintering temperature of 1350°C for 8 hours in an air atmosphere. The structural, morphological, and thermal characterizations have been performed using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA), and Differential Thermal Analysis (DTA). From Rietveld refinement, we confirmed that our prepared sample was an orthorhombic crystal structure in the Pbnm space group. From TG/DTA, we get a gradual weight gain from 150oC to 780oC and a sharp weight loss after the temperature of 780oC. The SEM image of the pellet surface of the sample shows that the sample sintered at 1350oC was dense and suitable to use as an electrolyte in solid oxide fuel cells (SOFCs).
[1] E. Fabbri, D. Pergolesi, and E. Traversa. “Materials challenges toward proton-conducting oxide fuel cells: a critical review.” Chem. Soc. Rev., vol. 39, no. 11, p. 4355, 2010, doi: 10.1039/b902343g.
[2] C. Duan, et al. “Readily processed protonic ceramic fuel cells with high performance at low temperatures.” Sci., vol. 349, no. 6254, pp. 1321–1326, Sep. 2015, doi: 10.1126/science.aab3987.
[3] E. C. C. de Souza and R. Muccillo. “Properties and applications of perovskite proton conductors.” Mater. Res., vol. 13, no. 3, pp. 385–394, Sep. 2010, doi: 10.1590/S1516-14392010000300018.
[4] R. Haugsrud and T. Norby. “Proton conduction in rare-earth ortho-niobates and ortho-tantalates.” Nat. Mater., vol. 5, no. 3, pp. 193–196, Mar. 2006, doi: 10.1038/nmat1591.
[5] R. N. Karnik. “Materials science: Breakthrough for protons.” Nature, vol. 516, no. 7530, pp. 173–175, Dec. 2014.
[6] P. Qiu, et al. “LaCrO 3 -Coated La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3−δ Core–Shell Structured Cathode with Enhanced Cr Tolerance for Intermediate-Temperature Solid Oxide Fuel Cells.” ACS Appl. Mater. Interfaces, p. acsami.0c01962, Jun. 2020, doi: 10.1021/acsami.0c01962.
[7] S.-L. Zhang, et al. “Cobalt-substituted SrTi 0.3 Fe 0.7 O 3−δ : a stable high-performance oxygen electrode material for intermediate-temperature solid oxide electrochemical cells.” Energy Environ. Sci., vol. 11, no. 7, pp. 1870–1879, 2018, doi: 10.1039/C8EE00449H.
[8] Z. Shi, W. Sun, and W. Liu, “Synthesis and characterization of BaZr0.3Ce0.5Y0.2−xYbxO3−δ proton conductor for solid oxide fuel cells.” J. Power Sources, vol. 245, pp. 953–957, Jan. 2014, doi: 10.1016/j.jpowsour.2013.07.060.
[9] K. Katahira, Y. Kohchi, T. Shimura, and H. Iwahara. “Protonic conduction in Zr-substituted BaCeO3.” Solid State Ionics, vol. 138, no. 1–2, pp. 91–98, Dec. 2000, doi: 10.1016/S0167-2738(00)00777-3.
[10] A. K. Azad and J. T. S. Irvine. “High density and low temperature sintered proton conductor BaCe0.5Zr0.35Sc0.1Zn0.05O3-delta.” Solid State Ionics, vol. 179, no. 19–20, pp. 678–682, 2008, doi: DOI 10.1016/j.ssi.2008.04.036.
[11] R. Kannan, K. Singh, S. Gill, T. Fürstenhaupt, and V. Thangadurai. “Chemically stable proton conducting doped BaCeO₃ -no more fear to SOFC wastes.” Sci. Rep., vol. 3, p. 2138, 2013, doi: 10.1038/srep02138.
[12] H. Kawamori, I. Oikawa, and H. Takamura. “Protonation-Induced B -Site Deficiency in Perovskite-Type Oxides: Fully Hydrated BaSc 0.67 O(OH) 2 as a Proton Conductor.” Chem. Mater., vol. 33, no. 15, pp. 5935–5942, Aug. 2021, doi: 10.1021/acs.chemmater.1c01017.
[13] J. Lv, L. Wang, D. Lei, H. Guo, and R. V Kumar. “Sintering, chemical stability and electrical conductivity of the perovskite proton conductors BaCe0.45Zr0.45M0.1O3−δ (M = In, Y, Gd, Sm).” J. Alloys Compd., vol. 467, no. 1–2, pp. 376–382, 2009, doi: http://dx.doi.org/10.1016/j.jallcom.2007.12.103.
[14] A. K. Azad and J. T. S. Irvine. “Synthesis, chemical stability and proton conductivity of the perovksites Ba(Ce,Zr)(1-x)Sc-x O3-delta.” Solid State Ionics, vol. 178, no. 7–10, pp. 635–640, 2007, doi: DOI 10.1016/j.ssi.2007.02.004.
[15] P. Sawant, S. Varma, B. N. Wani, and S. R. Bharadwaj. “Synthesis, stability and conductivity of BaCe0.8−xZrxY0.2O3−δ as electrolyte for proton conducting SOFC.” Int. J. Hydrogen Energy, vol. 37, no. 4, pp. 3848–3856, 2012,
doi: 10.1016/j.ijhydene.2011.04.106.
[16] D. A. Stevenson, N. Jiang, R. M. Buchanan, and F. E. G. Henn. “Characterization of Gd, Yb and Nd doped barium cerates as proton conductors.” Solid State Ionics, vol. 62, no. 3–4, pp. 279–285, 1993, doi: http://dx.doi.org/10.1016/0167-2738(93)90383-E.
[17] A. K. Azad, A. Kruth, and J. T. S. Irvine. “Influence of atmosphere on redox structure of BaCe0.9Y0.1O2.95 – Insight from neutron diffraction study,” Int. J. Hydrogen Energy, vol. 39, no. 24, pp. 12804–12811, Aug. 2014,
doi: 10.1016/j.ijhydene.2014.05.080.
[18] A. K. Azad, D. D. Y. Setsoafia, L. C. Ming, and P. M. I. Petra. “Synthesis and characterization of high density and low temperature sintered proton conductor BaCe0.5Zr0.35In0.1Zn0.05O3-d.” Adv. Mater. Res., vol. 1098, pp. 104–109, 2015.
[19] P. Babilo and S. M. Haile. “Enhanced sintering of yttrium-doped barium zirconate by addition of ZnO.” J. Am. Ceram. Soc., vol. 88, no. 9, pp. 2362–2368, 2005, doi: 10.1111/j.1551-2916.2005.00449.x.
[20] S. Tao and J. T. S. Irvine. “A stable, easily sintered proton-conducting oxide electrolyte for moderate-temperature fuel cells and electrolyzers.” Adv. Mater., vol. 18, no. 12, pp. 1581–1584, 2006.
[21] X. Lu, Y. Ding, and Y. Chen. “Ba0.5Sr0.5Zn0.2Fe0.8O3−δ–BaCe0.5Zr0.3Y0.16Zn0.04O3−δ composite cathode for proton-conducting solid oxide fuel cells.” J. Alloys Compd., vol. 484, no. 1–2, pp. 856–859, 2009, doi: 10.1016/j.jallcom.2009.05.065.
[22] S. Hossain, N. Radenahmad, J. H. Zaini, F. Begum, and A. K. Azad. “Structural, thermal and microstructural studies of the proton conductor BaCe 0.7 Zr 0.1 Y 0.05 Zn 0.15 O 3 for IT-SOFCs.” IOP Conf. Ser. Mater. Sci. Eng., vol. 121, p. 012014, Mar. 2016, doi: 10.1088/1757-899X/121/1/012014.
[23] N. Bonanos. “Oxide-based protonic conductors: point defects and transport properties.” Solid State Ionics, vol. 145, no. 1–4, pp. 265–274, 2001, doi: http://dx.doi.org/10.1016/S0167-2738(01)00951-1.
[24] R. Glöckner, M. S. Islam, and T. Norby. “Protons and other defects in BaCeO3: a computational study,” Solid State Ionics, vol. 122, no. 1–4, pp. 145–156, 1999, doi: http://dx.doi.org/10.1016/S0167-2738(99)00070-3.
[25] I. Ahmed, et al. “Location of deuteron sites in the proton conducting perovskite BaZr0.50In0.50O3−y.” J. Alloys Compd., vol. 450, no. 1–2, pp. 103–110, 2008, doi: http://dx.doi.org/10.1016/j.jallcom.2006.11.154.
[26] A. K. Azad and J. T. S. Irvine. “Location of Deuterium Positions in the Proton-Conducting Perovskite BaCe 0.4 Zr 0.4 Sc 0.2 O 2.90 · x D 2 O by Neutron Powder Diffraction.” Chem. Mater., vol. 21, no. 2, pp. 215–222, Jan. 2009, doi: 10.1021/cm8031847.
[27] M. Miyake, M. Iwami, M. Takeuchi, S. Nishimoto, and Y. Kameshima. “Electrochemical performance of Ni0.8Cu0.2 /Ce0.8Gd0.2O1.9 cermet anodes with functionally graded structures for intermediate-temperature solid oxide fuel cell fueled with syngas.” J. Power Sources, vol. 390, pp. 181–185, Jun. 2018, doi: 10.1016/j.jpowsour.2018.04.051.
[28] I. Ahmed, et al. “Crystal Structure and Proton Conductivity of BaZr0. 9Sc0. 1O3- δ.” J. Am. Ceram. Soc., vol. 91, no. 9, pp. 3039–3044, 2008.
[29] A. I. Klyndyuk, et al. “Double substituted NdBa(Fe,Co,Cu)2O5+δ layered perovskites as cathode materials for intermediate-temperature solid oxide fuel cells – correlation between structure and electrochemical properties.” Electrochim. Acta, vol. 411, p. 140062, Apr. 2022, doi: 10.1016/j.electacta.2022.140062.
[30] S. Hossain, et al. “Preparation and Structural Properties of ZnAl x Fe 2 − x O 4 Spinel Oxide.” no. February, pp. 203–209, 2016.
[31] L. Zhang, Y. Wang, B. Liu, J. Wang, G. Han, and Y. Zhang. “Characterization and property of magnetic ferrite ceramics with interesting multilayer structure prepared by solid-state reaction.” Ceram. Int., vol. 47, no. 8, pp. 10927–10939, Apr. 2021,
doi: 10.1016/j.ceramint.2020.12.212.
[32] S. Hossain, M. K. Hasan, S. K. M. Yunus, A. K. M. Zakaria, T. K. Datta, and A. K. Azad. “Synthesis and Investigation of the Structural Properties of Al3+ Doped Mg Ferrites.” Appl. Mech. Mater., vol. 789–790, pp. 48–52, Sep. 2015,
doi: 10.4028/www.scientific.net/AMM.789-790.48.
[33] S. Khanam, et al. “Study of the Crystallographic and Magnetic Structure in the Nickel Substituted Cobalt Ferrites by Neutron Diffraction.” Mater. Sci. Appl., vol. 6, pp. 332–342, 2015, doi: 10.4236/msa.2015.64038.
[34] A. K. M. Zakaria, et al. “Cation distribution and crystallographic characterization of the spinel oxides MgCr x Fe 2Àx O 4 by neutron diffraction.” J. Alloys Compd., vol. 633, pp. 115–119, 2015, doi: 10.1016/j.jallcom.2015.01.179.
[35] P. E. Werner, L. Eriksson, and M. Westdahl. “TREOR, a semi-exhaustive trial-and-error powder indexing program for all symmetries.” J. Appl. Crystallogr., vol. 18, no. 5, pp. 367–370, 1985, doi: 10.1107/S0021889885010512.
[36] J. Lougier and B. Bochu. (n.d.). “‘Checkcell: Graphical Powder Diffraction Indexing Cell and Space Group Assignment Soft-ware.’”
[37] J. Rodriguez-Carvajal. “Recent advances in magnetic structure determination by neutron powder diffraction + FullProf.” Phys. B Condens. Matter, vol. 192, no. 1–2, p. 55, 1993.
Structural Characterization of Multi-doped Barium Cerate as Perovskite for Solid Oxide Fuel Cells
How to cite this paper: S. Hossain, M. S. Islam, S. A. Lopa, A. M. Abdalla, A. K. Azad. (2023).Structural Characterization of Multi-doped Barium Cerate as Perovskite for Solid Oxide Fuel Cells. Engineering Advances, 3(5), 387-394.
DOI: http://dx.doi.org/10.26855/ea.2023.10.001