Article http://dx.doi.org/10.26855/ijcemr.2024.01.029

Sitting-walking Derived from Tai Chi Gait: A Fundamental Improvement to Fall Prevention in Older Adults (Part 1)—Characteristics of Sitting-walking


Lei Ming1,*, Lijia Zhang2

1Spa of Amanfayun Resorts, Hangzhou, Zhejiang, China.

2La Dolce Vita Spa for Wellness, Middletown, DE, USA.

*Corresponding author: Lei Ming

Published: March 11,2024


Tai Chi (TC), a traditional exercise originating in China, is increasingly being recognized for its health benefits, especially in older adults, including fall prevention. TC has always been regarded as an alternative or auxiliary exercise intervention to prevent falls in older adults. The training and evaluation adopted focused on strengthening the muscle strength and balance ability of the lower limbs, and the exercise forms adopted were mainly actions and movements, a few of which focused on the TC gait (TCG). These factors cause the fall prevention effect to become unsatisfactory. There are different views on this topic in academic circles. This is related to a lack of understanding of the movement principles and mechanisms of TC. The authors believe that the solution to the problem of fall prevention should focus on the gait itself and that the uniqueness of TC is largely reflected in the gait. Through years of exploration and research, the authors applied TCG to daily walking and created a unique sitting-walking (SW) mode to fully exploit the function of TC in preventing falls. Its advantages in balance and its role in fall prevention in older adults are found in practice and teaching, which are discussed in Parts II and III of this series of papers, respectively. Based on a comparison with normal walking (NW), this study qualitatively describes SW from gait events, movement process, energy form, and walking posture, and lays the foundation for the discussion of the latter two parts.


[1] Tousignant, M., Corriveau, H., Roy, P.M., Desrosiers, J., Dubuc, N., and Hébert, R. (2013). Efficacy of supervised Tai Chi exercises versus conventional physical therapy exercises in fall prevention for frail older adults: a randomized controlled trial. Disabil Rehabil, 35(17), 1429-1435. doi: 10.3109/09638288.2012.737084.

[2] Faber, M.J., Bosscher, R.J., Chin A Paw, M.J., and van Wieringen, P.C. (2006). Effects of exercise programs on falls and mobility in frail and pre-frail older adults: A multicenter randomized controlled trial. Arch Phys Med Rehabil, 87(7), 885-896. doi: 10.1016/j.apmr.2006.04.005. 

[3] Greenspan, A.I., Wolf, S.L., Kelley, M.E., and O’Grady, M. (2007). Tai chi and perceived health status in older adults who are transitionally frail: a randomized controlled trial. Phys Ther, 87 (5), 525-535. doi:10.2522/ptj.20050378.

[4] Christou, E.A., Yang, Y., and Rosengren, K.S. (2003). Taiji training improves knee extensor strength and force control in older adults. J Gerontol A Biol Sci Med Sci, 58 (8), 763-766. doi:10.1093/gerona/58.8.m763.

[5] Li, F.-Z., Harmer, P., Fisher, K.J., McAuley, E., Chaumeton, N. R., Eckstrom, E. and Wilson, N. L. (2005). Tai Chi and fall reductions in older adults: a randomized controlled trial. The Journals of gerontology. The journals of gerontology. Series A, Biological Sciences and Medical Sciences, 60(2), 187-194. doi: 10.1093/gerona/60.2.187. 

[6] Gatts, S. (2008). A Tai Chi Chuan training model to improve balance control in older adults. Curr Aging Sci, 1(1), 68-70. doi: 10.2174/1874609810801010068. 

[7] Mortazavi, H., Tabatabaeichehr, M., Golestani. A., Armat, M.R., and Yousefi, M.R. (2018). The Effect of Tai Chi Exercise on the Risk and Fear of Falling in Older Adults: a Randomized Clinical Trial. Mater Sociomed, 30(1), 38-42. doi: 10.5455/msm. 2018.30.38-42. 

[8] Lin, M.-R., Hwang, H.-F., Wang, Y.-W., Chang, S.-H., and Wolf, S.L. (2006). Community-based tai chi and its effect on injurious falls, balance, gait, and fear of falling in older people. Phys Ther, 86(9), 1189-1201. doi: 10.2522/ptj.20040408. 

[9] Wu, G. (2002). Evaluation of the effectiveness of Tai Chi for improving balance and preventing falls in the older population--a review. J Am Geriatr Soc, 50(4), 746-754. doi: 10.1046/j.1532-5415.2002.50173.x. 

[10] Verhagen, A.P., Immink, M., van der Meulen, A., and Bierma-Zeinstra, S.M. (2004). The efficacy of Tai Chi Chuan in older adults: a systematic review. Fam Pract, 21(1), 107-113. doi: 10.1093/fampra/cmh122. 

[11] Li, J.-X., Hong, Y., and Chan, K.-M. (2001). Tai chi: physiological characteristics and beneficial effects on health. Br J Sports Med, 35(3), 148-156. doi: 10.1136/bjsm.35.3.148. 

[12] Woo, J., Hong, A., Lau, E., and Lynn, H. (2007). A randomised controlled trial of Tai Chi and resistance exercise on bone health, muscle strength and balance in community-living elderly people. Age Ageing, 36(3), 262-268. doi: 10.1093/ageing/afm005. 

[13] Li, F.-Z., Harmer, P., Fisher, K.J., and McAuley, E. (2004). Tai Chi: improving functional balance and predicting subsequent falls in older persons. Med Sci Sports Exerc, 36(12), 2046-2052. doi: 10.1249/01.mss.0000147590.54632.e7. 

[14] Li, F.-Z., Harmer, P., Eckstrom, E., Fitzgerald, K., Chou, L.-S., and Liu, Y. (2019). Effectiveness of Tai Ji Quan vs Multimodal and Stretching Exercise Interventions for Reducing Injurious Falls in Older Adults at High Risk of Falling: Follow-up Analysis of a Randomized Clinical Trial. JAMA Netw Open, 2(2), e188280. doi: 10.1001/jamanetworkopen.2018.8280. 

[15] Li, F.-Z., Harmer, P., Fitzgerald, K., Eckstrom, E., Akers, L., Chou, L.-S., Pidgeon, D., Voit, J., and Winters-Stone, K. (2018). Effectiveness of a Therapeutic Tai Ji Quan Intervention vs a Multimodal Exercise Intervention to Prevent Falls Among Older Adults at High Risk of Falling: A Randomized Clinical Trial. JAMA Intern Med, 178(10), 1301-1310. doi: 10.1001/jamainternmed.2018.3915. 

[16] Sherrington, C., Fairhall, N.J., Wallbank, G.K., Tiedemann, A., Michaleff, Z.A., Howard, K., Clemson, L., Hopewell, S., and Lamb, S.E. (2019). Exercise for preventing falls in older people living in the community. Cochrane Database Syst Rev, 1(1), CD012424. doi: 10.1002/14651858.CD012424.pub2. 

[17] Wu, S., Chen, J., Wang, S., Jiang, M., Wang, X., and Wen, Y. (2018). Effect of Tai Chi Exercise on Balance Function of Stroke Patients: A Meta-Analysis. Med Sci Monit Basic Res, 24, 210-215. doi: 10.12659/MSMBR.911951. 

[18] Lomas-Vega, R., Obrero-Gaitán, E., Molina-Ortega, F.J., and Del-Pino-Casado, R. (2017). Tai Chi for Risk of Falls. A Meta-analysis. J Am Geriatr Soc, 65(9), 2037-2043. doi: 10.1111/jgs.15008. 

[19] Zhong, D.-L., Xiao, Q.-W., Xiao, X.-L., Li, Y.-X., Ye, J., Xia, L.-N., Zhang, C., Li, J., Zheng, H., and Jin, R.-J. (2020). Tai Chi for improving balance and reducing falls: An overview of 14 systematic reviews. Ann Phys Rehabil Med. 63(6), 505-517. doi: 10.1016/j.rehab.2019.12.008. 

[20] Logghe, I.H., Verhagen, A.P., Rademaker, A.C., Bierma-Zeinstra, S.M., van Rossum, E., Faber, M.J., and Koes, B.W. (2010). The effects of Tai Chi on fall prevention, fear of falling and balance in older people: a meta-analysis. Prev Med, 51(3-4), 222-227. doi: 10.1016/j.ypmed.2010.06.003. 

[21] Wolf, S.L., Barnhart, H.X., Kutner, N.G., McNeely, E., Coogler, C., Xu, T., and Atlanta FICSIT Group. (2003). Selected as the best paper in the 1990s: Reducing frailty and falls in older persons: an investigation of tai chi and computerized balance training. J Am Geriatr Soc., 51(12), 1794-803. doi: 10.1046/j.1532-5415.2003.51566.x. 

[22] Yang, F., and Liu, W. (2020). Biomechanical mechanism of Tai-Chi gait for preventing falls: A pilot study. J Biomech, 105, 109769. doi: 10.1016/j.jbiomech.2020.109769. 

[23] Li, F.-Z., Fisher, K.J., Harmer, P., and Shirai, M. (2003). A Simpler Eight-Form Easy Tai Chi for Elderly Adults. J AGING PHYS ACTIV, 11(2), 206-218. doi:10.1123/japa.11.2.206.

[24] Wang, H.-R., Wei, A.-K., Lu, Y.-Z., Yu, B., Chen, W.-H., Lu, Y., Liu, Y., Yu, D.-H., and Zou, L.-Y. (2016). Simplified Tai Chi Program Training versus Traditional Tai Chi on the Functional Movement Screening in Older Adults. Evid Based Complement Alternat Med, 2016, 5867810. doi: 10.1155/2016/5867810. 

[25] Speechley, M., and Tinetti, M. (1991). Falls and injuries in frail and vigorous community elderly persons. J Am Geriatr Soc, 39(1), 46-52. doi:10.1111/j.1532-5415.1991.tb05905.x.

[26] Wolf, S.L., Sattin, R.W., Kutner, M., O'Grady, M., Greenspan, A.I., and Gregor, R.J. (2003). Intense tai chi exercise training and fall occurrences in older, transitionally frail adults: a randomized, controlled trial. J Am Geriatr Soc, 51(12), 1693-1701. doi: 10.1046/j.1532-5415.2003.51552.x. 

[27] Wolf, S.L., Barnhart, H.X., Kutner, N.G., McNeely, E., Coogler, C., and Xu, T. (1996). Reducing frailty and falls in older persons: an investigation of Tai Chi and computerized balance training. Atlanta FICSIT Group. Frailty and Injuries: Cooperative Studies of Intervention Techniques. J Am Geriatr Soc, 44(5), 489-497. doi: 10.1111/j.1532-5415.1996.tb01432.x. PMID: 8617895.

[28] Penn, I.-W., Sung, W.-H., Lin, C.-H., Chuang, E., Chuang, T.-Y., and Lin, P.-H. (2019). Effects of individualized Tai-Chi on balance and lower-limb strength in older adults. BMC Geriatr, 19(1), 235. doi: 10.1186/s12877-019-1250-8. 

[29] Wehner, C., Blank, C., Arvandi, M., Wehner, C., and Schobersberger, W. (2021). Effect of Tai Chi on muscle strength, physical endurance, postural balance and flexibility: a systematic review and meta-analysis. BMJ Open Sport Exerc Med, 7(1), e000817. doi: 10.1136/bmjsem-2020-000817. 

[30] Wu, G., Liu, W., Hitt, J., and Millon, D. (2004). Spatial, temporal and muscle action patterns of Tai Chi gait. J Electromyogr Kinesiol, 14(3), 343-354. doi: 10.1016/j.jelekin.2003.09.002. 

[31] Ming, L. (n. d.) Tai Chi Medication: Methodology of Internal Equilibrium Re-creation for the Musculoskeletal System. Unpublish.

[32] Kaufman, K.R., and Sutherland, D.H. (2006). Kinematics of Normal Human Walking. In J. Rose & J. G. Gamble (Eds.). Human Walking. 3rd edn. (pp.33-52). Philadelphia: Lippincott Williams & Wilkins. 

[33] Hamilton, N., Weimar, W., and Luttgens, K. (2007). Kinesiology: Scientific Basis of Human Motion. 11th ed. New York: McGraw-Hill.

[34] Inman, V.T., Ralston, H.J., Todd, F., Childress, D.S., and Gard, S.A. (2006). Human Locomotion. In J. Rose & J. G. Gamble (Eds.). Human Walking. 3rd edn. (pp.1-18). Philadelphia: Lippincott Williams & Wilkins.

[35] Cappozzo, A. (1981). Analysis of the linear displacement of the head and trunk during walking at different speeds. J Biomech, 14(6), 411-425. doi: 10.1016/0021-9290(81)90059-2. 

[36] Lee, C.R., and Farley, C.T. (1998). Determinants of the center of mass trajectory in human walking and running. J Exp Biol, 201(Pt 21), 2935-2944. doi: 10.1242/jeb.201.21.2935. 

[37] Minetti, A.E., Capelli, C., Zamparo, P., di Prampero, P.E., and Saibene, F. (1995). Effects of stride frequency on mechanical power and energy expenditure of walking. Med Sci Sports Exerc. 27(8), 1194-1202. 

[38] Simoneau, G.G. (2010). Chapter 15: Kinesiology of Walking. In Neumann, D. A. (Ed.). Kinesiology of the musculoskeletal sys-tem: foundations for rehabilitation. 2nd edn. (pp.627-681). St. Louis: Mosby/Elsevier.

[39] DeVita, P., Helseth, J., and Hortobagyi, T. (2007). Muscles do more positive than negative work in human locomotion. J Exp Biol, 210(Pt 19), 3361-3373. doi: 10.1242/jeb.003970. 

[40] Winter, D.E. (1991). The biomechanics and motor control of human gait: Normal, elderly and pathological, 2nd ed. Waterloo, Canada: Univ Waterloo Press.

[41] O'Kane, F.W., McGibbon, C.A., and Krebs, D.E. (2003). Kinetic analysis of planned gait termination in healthy subjects and patients with balance disorders. Gait Posture, 17(2), 170-179. doi: 10.1016/s0966-6362(02)00104-2. 

[42] Boakes, J. L. and Rab, G. T. (2006). Muscle Activity During Walking. In J. Rose & J. G. Gamble (Eds.). Human Walking. 3rd edn. (pp.103-118). Philadelphia: Lippincott Williams & Wilkins.

[43] Daley, M.A., and Biewener, A.A. (2003). Muscle force-length dynamics during level versus incline locomotion: a comparison of in vivo performance of two guinea fowl ankle extensors. J Exp Biol, 206(Pt 17), 2941-2958. doi: 10.1242/jeb.00503. 

[44] Gabaldón, A.M., Nelson, F.E., and Roberts, T.J. (2004). Mechanical function of two ankle extensors in wild turkeys: shifts from energy production to energy absorption during incline versus decline running. J Exp Biol, 207(Pt 13), 2277-2288. doi: 10.1242/jeb.01006. 

[45] McIntosh, A.S., Beatty, K.T., Dwan, L.N., and Vickers, D.R. (2006). Gait dynamics on an inclined walkway. J Biomech, 39(13), 2491-2502. doi: 10.1016/j.jbiomech.2005.07.025. 

[46] Riener, R., Rabuffetti, M., and Frigo, C. (2002). Stair ascent and descent at different inclinations. Gait Posture, 15(1), 32-44. doi: 10.1016/s0966-6362(01)00162-x. 

[47] Saibene, F., and Minetti, A.E. (2003). Biomechanical and physiological aspects of legged locomotion in humans. Eur J Appl Physiol, 88(4), 297-316. doi: 10.1007/s00421-002-0654-9.

[48] Davis, R. B. and Kaufman, K. R. (2006). Kinetics of Normal Walking. In J. Rose & J. G. Gamble (Eds.). Human Walking. 3rd edn. (pp.53-76). Philadelphia: Lippincott Williams & Wilkins.

[49] Cavagna, G.A., and Kaneko, M. (1977). Mechanical work and efficiency in level walking and running. J Physiol, 268(2), 467-481. doi: 10.1113/jphysiol.1977.sp011866. 

[50] Ortega, J.D., and Farley, C.T. (2005). Minimizing center of mass vertical movement increases metabolic cost in walking. J Appl Physiol (1985), 99(6), 2099-2107. doi: 10.1152/japplphysiol.00103.2005.

[51] Bonnefoy-Mazure, A. and Armand, S. (2015). Normal gait. In: F. Canavese and J. Deslandes (Eds.). Orthopedic Management of Children with Cerebral Palsy. (pp.199-213). Hauppauge (NY): Nova Science Publishers. 

[52] Zhao, G.-P., Grimmer, M., and Seyfarth, A. (2021). The mechanisms and mechanical energy of human gait initiation from the lower-limb joint level perspective. Sci Rep, 11(1), 22473. doi: 10.1038/s41598-021-01694-5. 

[53] Elders, L.R., Greenwald, H.L., and Sartor, C.A. (1997). A Preliminary Study of Trunk Kinematics during Walking in Normal Subjects. Masters Theses, 322. http://scholarworks.gvsu.edu/theses/322.

[54] Waters, R.L., Morris, J., and Perry, J. (1973). Translational motion of the head and trunk during normal walking. J Biomech, 6(2), 167-172. doi: 10.1016/0021-9290(73)90085-7. 

[55] Kermoian, R. Johanson, M. E., Butler, E. E. and Skinner, S. (2006). Development of Gait. In Rose, J. and Gamble, J. G. (Eds.). Human Walking. 3rd edn. (pp.119-130). Philadelphia: Lippincott Williams & Wilkins.

[56] Crosbie, J., Vachalathiti, R., and Smith, R. (1997a). Patterns of spinal motion during walking. Gait & Posture, 5(1), 6-12. doi: 10.1016/s0966-6362(96)01066-1.

[57] Krebs, D.E, Wong, D., Jevsevar, D., Riley, P.O., and Hodge, W.A. (1992). Trunk kinematics during locomotor activities. Phys Ther, 72(7), 505-514. doi: 10.1093/ptj/72.7.505. 

[58] Perry, J., and Burnfield, J. (2010). Gait Analysis: Normal and Pathological Function. 2nd edn. Thorofare (NJ): Slack Incorporated.

[59] Cappozzo, A., Dellacroce U., Leardini, A., and Chiari, L. (2005). Human movement analysis using stereophotogrammetry. Part 1: theoretical background. Gait Posture, 21(2),186-196. doi: 10.1016/s0966-6362(04)00025-6.

[60] Levangie, P.K., and Norkin, C.C. (2011). Joint structure and function: A comprehensive analysis.5th edn. Philadelphia: FA Davis.

[61] Lewis, C.L., Laudicina, N.M., Khuu, A., and Loverro, K.L. (2017). The Human Pelvis: Variation in Structure and Function During Gait. Anat Rec (Hoboken). 300(4), 633-642. doi: 10.1002/ar.23552. 

[62] Neumann, D. A. (2010). Kinesiology of the musculoskeletal system: foundations for rehabilitation. 2nd edn. St. Louis: Mosby/ Elsevier.

[63] Crosbie, J., Vachalathiti, R., and Smith, R. (1997). Age, gender and speed effects on spinal kinematics during walking. Gait & Posture, 5(1), 13-20. doi: 10.1016/s0966-6362(96)01068-5.

[64] Stokes, V.P., Andersson, C., and Forssberg, H. (1989).  Rotational and translational movement features of the pelvis and thorax during adult human locomotion. J Biomech, 22(1), 43-50. doi: 10.1016/0021-9290(89)90183-8. 

[65] Sekiya, N. (2008). Reconsidering the Six Determinants of Gait. The Japanese Journal of Rehabilitation Medicine, 45, 668-676. doi: 10.2490/JJRMC.45.668.

[66] O'Neill, M.C., Lee, L.F., Demes, B., Thompson, N.E., Larson, S.G., Stern, J.T. Jr., and Umberger, B.R. (2015). Three-dimensional kinematics of the pelvis and hind limbs in chimpanzee (Pan troglodytes) and human bipedal walking. J Hum Evol, 86, 32-42. doi: 10.1016/j.jhevol.2015.05.012. 

[67] Saunders, J.B., Inman, V.T., and Eberhart, H.D. (1953). The major determinants in normal and pathological gait. J Bone Joint Surg Am, 35-A(3), 543-558. doi: 10.2106/00004623-195335030-00003. 

[68] Crompton, R.H., Yu, L., Weijie, W., Günther, M., and Savage, R. (1998). The mechanical effectiveness of erect and "bent-hip, bent-knee" bipedal walking in Australopithecus afarensis. J Hum Evol, 35(1), 55-74. doi: 10.1006/jhev.1998.0222. 

[69] Griffin, T.M., Roberts, T.J., and Kram, R. (2003). Metabolic cost of generating muscular force in human walking: insights from load-carrying and speed experiments. J Appl Physiol (1985), 95(1), 172-183. doi: 10.1152/japplphysiol.00944.2002. 

[70] Wang, W.-J., Crompton, R.H., Li, Y., and Gunther, M.M. (2003). Energy transformation during erect and 'bent-hip, bent-knee' walking by humans with implications for the evolution of bipedalism. J Hum Evol, 44(5), 563-579. doi: 10.1016/s0047-2484(03)00045-9. 

[71] Sutherland, D.H., Cooper, L., and Daniel, D. (1980). The role of the ankle plantar flexors in normal walking. J Bone Joint Surg Am, 62(3), 354-363. doi: 10.2106/00004623-198062030-00005. 

[72] Sutherland, D.H. (1966). An electromyographic study of the plantar flexors of the ankle in normal walking on the level. J Bone Joint Surg Am, 48(1), 66-71. doi: 10.2106/00004623-196648010-00005. 

[73] Gregersen, G.G., and Lucas, D.B. (1967). An in vivo study of the axial rotation of the human thoracolumbar spine. J Bone Joint Surg Am, 49(2), 247-262. doi: 10.2106/00004623-196749020-00003.

How to cite this paper

Sitting-walking Derived from Tai Chi Gait: A Fundamental Improvement to Fall Prevention in Older Adults (Part 1)—Characteristics of Sitting-walking

How to cite this paper: Lei Ming, Lijia Zhang. (2024) Sitting-walking Derived from Tai Chi Gait: A Fundamental Improvement to Fall Prevention in Older Adults (Part 1)—Characteristics of Sitting-walkingInternational Journal of Clinical and Experimental Medicine Research8(1), 153-164.

DOI: http://dx.doi.org/10.26855/ijcemr.2024.01.029