Article http://dx.doi.org/10.26855/ijcemr.2024.01.031

Advances in the Influence of Intestinal Flora on Tumour Development


Cong Li*, Nan Zhang, Xiang Li, Yu Li, Xiaojuan Jin, Bin Liang

Hunan Agricultural University, Changsha, Hunan, China.

*Corresponding author: Cong Li

Published: March 12,2024


Intestinal flora, as an important microenvironment in the human body, is closely linked to tumour development. In this paper, the influence of intestinal flora on tumour development is discussed in depth, aiming to provide a basis for understanding the mechanisms of tumour occurrence and development as well as finding new tumour therapies. Intestinal flora affects tumour development through a variety of mechanisms, including immune regulation, the action of metabolites, and direct stimulation of tumour cells. Different species and numbers of bacteria in the intestinal flora have different effects on tumour development, with beneficial, conditionally pathogenic, and pathogenic flora all having an impact on human tumours. In addition, metabolites and carcinogens of intestinal flora are also closely related to tumour development. This paper reviews the pro- and oncogenic relationships between intestinal flora and tumours, as well as some of the currently known mechanisms by which intestinal flora influence tumour development. The study of the influence of intestinal flora on tumour development is of great significance for an in-depth understanding of the mechanisms of tumour genesis and development, as well as the search for new tumour therapies.


[1] Park EM, Chelvanambi M, Bhutiani N, Kroemer G, Zitvogel L, Wargo JA. Targeting the gut and tumor microbiota in cancer. Nat Med. 2022 Apr; 28(4):690-703. doi: 10.1038/s41591-022-01779-2. Epub 2022 Apr 19. PMID: 35440726.

[2] Ramírez-Labrada AG, Isla D, Artal A, Arias M, Rezusta A, Pardo J, Gálvez EM. The Influence of Lung Microbiota on Lung Carcinogenesis, Immunity, and Immunotherapy. Trends Cancer. 2020 Feb; 6(2):86-97. doi: 10.1016/j.trecan.2019.12.007. Epub 2020 Jan 18. PMID: 32061309.

[3] Tojo R, Suárez A, Clemente MG, de los Reyes-Gavilán CG, Margolles A, Gueimonde M, Ruas-Madiedo P. Intestinal microbiota in health and disease: Role of bifidobacteria in gut homeostasis. World J Gastroenterol. 2014 Nov 7; 20(41):15163-76. doi: 10.3748/wjg.v20.i41.15163. PMID: 25386066; PMCID. PMC4223251.

[4] Leimbach A, Hacker J, Dobrindt U. E. coli as an all-rounder: the thin line between commensalism and pathogenicity. Curr Top Microbiol Immunol. 2013; 358. 3-32. doi: 10.1007/82_2012_303. PMID: 23340801.

[5] Pedrolli DB, Ribeiro NV, Squizato PN, de Jesus VN, Cozetto DA; Team AQA Unesp at iGEM 2017. Engineering Microbial Living Therapeutics: The Synthetic Biology Toolbox. Trends Biotechnol. 2019 Jan; 37(1):100-115. doi: 10.1016/j.tibtech. 2018. 09.005. Epub 2018 Oct 11. PMID: 30318171.

[6] Wong SH, Zhao L, Zhang X, Nakatsu G, Han J, Xu W, Xiao X, Kwong TNY, Tsoi H, Wu WKK, Zeng B, Chan FKL, Sung JJY, Wei H, Yu J. Gavage of Fecal Samples from Patients With Colorectal Cancer Promotes Intestinal Carcinogenesis in Germ-Free and Conventional Mice. Gastroenterology. 2017 Dec; 153(6):1621-1633.e6. doi: 10.1053/j.gastro.2017.08.022. Epub 2017 Aug 18. PMID: 28823860.

[7] Si H, Yang Q, Hu H, et al. Colorectal cancer occurrence and treatment based on changes in intestinal flora [J]. Seminars in Cancer Biology. 2020, 7013-10.

[8] Alhinai EA, Walton GE, Commane DM. The Role of the Gut Microbiota in Colorectal Cancer Causation. Int J Mol Sci. 2019 Oct 24; 20(21):5295. doi: 10.3390/ ijms20215295. pmid: 31653078; pmcid: pmc6862640.

[9] Verbeke KA, Boobis AR, Chiodini A, Edwards CA, Franck A, Kleerebezem M, Nauta A, Raes J, van Tol EA, Tuohy KM. Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutr Res Rev. 2015 Jun; 28(1):42-66. doi: 10.1017/S0954422415000037. PMID: 26156216; PMCID: PMC4501371.

[10] Hughes, R., Magee, E.A., Bingham, S. Protein degradation in the large intestine: relevance to colorectal cancer. Curr. Issues Intest. Microbiol. 2000, 1, 51-51. 1, 51-58.

[11] Blachier, F., Mariotti, F., Huneau, J.F., Tome, D. Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids. 2007, 33, 547-562.

[12] Tan Q, Orsso CE, Deehan EC, Kung JY, Tun HM, Wine E, Madsen KL, Zwaigenbaum L, Haqq AM. Probiotics, prebiotics, synbiotics, and fecal microbiota transplantation in the treatment of behavioural symptoms of autism spectrum disorder: a systemat-ic review. Autism Res. 2021 Sep; 14(9):1820-1836. doi. 10.1002/aur.2560. epub 2021 Jun 26. pmid: 34173726.

[13] Settanni CR, Bibbò S, Ianiro G, Rinninella E, Cintoni M, Mele MC, Cammarota G, Gasbarrini A. Gastrointestinal involvement of autism spectrum disorder. Focus on gut microbiota. Expert Rev Gastroenterol Hepatol. 2021 Jun; 15(6):599-622. doi: 10.1080/17474124.2021.1869938. Epub 2021 Jan 5. PMID. 33356668.

[14] D'Amelio P, Sassi F. Gut Microbiota, Immune System, and Bone. Calcif Tissue Int. 2018 Apr; 102(4):415-425. doi: 10.1007/s00 223-017-0331-y. Epub 2017 Sep 30. pmid: 28965190.

[15] Eusebi LH, Zagari RM, Bazzoli F. Epidemiology of Helicobacter pylori infection. Helicobacter. 2014 Sep;19 Suppl 1:1-5. doi: 10.1111/hel.12165. PMID. 25167938.

[16] Camilo V, Sugiyama T, Touati E. Pathogenesis of Helicobacter pylori infection. Helicobacter. 2017 Sep; 22 Suppl 1. doi: 10.1111/hel.12405. PMID. 28891130.

[17] Xusheng Z, Dou Y, Di W, et al. Tissue-resident Lachnospiraceae family bacteria protect against colorectal carcinogenesis by pro-moting tumor immune surveillance [J]. Cell Host Microbe. 2023, 31(3):418-432.e8.

[18] Mou Y, Du Y, Zhou L, Yue J, Hu X, Liu Y, Chen S, Lin X, Zhang G, Xiao H, Dong B. Gut Microbiota Interact with the Brain Through Systemic Chronic Inflammation. Implications on Neuroinflammation, Neurodegeneration, and Aging. Front Immunol. 2022 Apr 7; 13:796288. doi: 10.3389/fimmu.2022.796288. PMID. 35464431; PMCID: PMC9021448.

[19] Chen X, Wei J, Zhang Y, Zhang Y, Zhang T. Crosstalk between gut microbiome and neuroinflammation in pathogenesis of HIV-associated neurocognitive disorder. J Neurol Sci. 2024 Jan 18; 457:122889. doi: 10.1016/j.jns.2024.122889. Epub ahead of print. PMID: 38262196.

[20] Clay SL, Fonseca-Pereira D, Garrett WS. Colorectal cancer: the facts in the case of the microbiota. J Clin Invest. 2022 Feb 15; 132(4):e155101. doi. 10.1172/JCI155101. PMID: 35166235; PMCID: PMC8843708.

[21] Chrysostomou D, Roberts LA, Marchesi JR, Kinross JM. Gut Microbiota Modulation of Efficacy and Toxicity of Cancer Chemotherapy and Immunotherapy. Gastroenterology. 2023 Feb; 164(2):198-213. doi: 10.1053/j.gastro.2022.10.018. Epub 2022 Oct 27. PMID: 36309208.

[22] Si H, Yang Q, Hu H, et al. Colorectal cancer occurrence and treatment based on changes in intestinal flora [J]. Seminars in Cancer Biology. 2020, 7013-10.

[23] Vargo D, Moskovitz M, Floch MH. Faecal bacterial flora in cancer of the colon. gut. 1980 Aug; 21(8):701-5. doi: 10.1136/gut. 21.8.701. PMID: 7429334. PMCID: PMC1419105.

[24] Haoyan C, Tianying T, Shiyuan L, et al. Urea cycle activation triggered by host-microbiota maladaptation driving colorectal tu-mourigenesis [J]. Cell metabolism. 2023, 35(4).

[25] Al-Khazaleh AK, Jaye K, Chang D, Münch GW, Bhuyan DJ. Buds and Bugs: A Fascinating Tale of Gut Microbiota and Canna-bis in the Fight against Cancer. Int J Mol. Sci. 2024 Jan 10; 25(2):872. doi: 10.3390/ijms25020872. PMID: 38255944.

[26] Ningning L, Chengxiang Y, Luqi W, et al. The intratumor mycobiome promotes lung cancer progression via myeloid-derived suppressor cells [J]. Cancer Cell. 2023, 41(11):1927-1944.e9.

[27] Reddy BS, Weisburger JH, Narisawa T, Wynder EL. Colon carcinogenesis in germ-free rats with 1,2-dimethylhydrazine and N-methyl-n'- nitro-Nnitrosoguanidine. Cancer Res. (1974) 34(9):2368-72.

[28] Reddy BS, Narisawa T, Wright P, Vukusich D, Weisburger JH, Wynder EL. Colon carcinogenesis with azoxymethane and dime-thylhydrazine in germfree rats. Cancer Res. (1975) 35(2):287-90.

[29] Reddy BS, Narisawa T, Weisburger JH. Colon carcinogenesis in germ-free rats with intrarectal 1,2-dimethylhydrazine and subcu-taneous azoxymethane. Cancer Res. (1976) 36(8):2874-6.

[30] Cheng Y, Ling Z, Li L. The Intestinal Microbiota and Colorectal Cancer. Front Immunol. 2020 Nov 30; 11:615056. doi: 10.3389/fimmu.2020.615056. PMID: 33329610; PMCID: PMC7734048. 33329610; PMCID: PMC7734048.

[31] Gou H, Su H, Liu D, Wong CC, Shang H, Fang Y, Zeng X, Chen H, Li Y, Huang Z, Fan M, Wei C, Wang X, Zhang X, Li X, and Yu J. Traditional Medicine Pien Tze Huang Suppresses Colorectal Tumorigenesis Through Restoring Gut Microbiota and Metabolites. Gastroenterology. 2023 Dec; 165(6):1404-1419. doi: 10.1053/j. gastro.2023.08.052. Epub 2023 Sep 12. PMID: 37704113.

How to cite this paper

Advances in the Influence of Intestinal Flora on Tumour Development

How to cite this paper: Cong Li, Nan Zhang, Xiang Li, Yu Li, Xiaojuan Jin, Bin Liang. (2024) Advances in the Influence of Intestinal Flora on Tumour DevelopmentInternational Journal of Clinical and Experimental Medicine Research8(1), 180-186.

DOI: http://dx.doi.org/10.26855/ijcemr.2024.01.031