TOTAL VIEWS: 1074
Helminthes have harmful impacts on livestock productivity by affecting growth rate, fertility, meat quality, and wool and milk production. The financial costs associated with these worms are significant. The global increase in anthelmintic-resistant nematodes of ruminants, together with consumer concerns about chemicals in food, necessitates the development of alternative methods of control for these pathogens. Vaccines are considered a favorable alternative because of the long-lasting protection they can provide and the absence of chemical residues in animal products and the environment. The process of vaccine development against parasites is complicated and faces several challenges. The safety and efficacy of the vaccine, detecting the protective antigens, identifying the protective mechanism, difficulty in obtaining enough quantities of parasite material, and decisions from policymakers are the main challenges for the production of effective helminth vaccines. Very few helminth vaccines are on the livestock market, currently for nematodes. These comprise only the cattle lungworm (Dictyocaulus viviparous) vaccine and a vaccine against the barber’s pole worm (Haemonchus contortus) in sheep, and the only recombinant helminth vaccine against the cestodes (Echinococcus granulosus) in ruminants. The ongoing development of experimental vaccines against several other helminth species in livestock holds promise for a wider range of helminth vaccines in the future.
[1] Vercruysse, J., Charlier, J., Van Dijk, J., Morgan, E. R., Geary, T., von Samson-Himmelstjerna, G., & Claerebout, E. (2018). Control of helminth ruminant infections by 2030. Parasitology, 145(13): 1655-1664.
[2] Pal, M., & Adugna, GL. (2022). Perspective of vaccination in veterinary medicine: A review. Journal of Advances in Microbiology Research, 3(2): 47-51.
[3] Roth, J. A. (2011). Veterinary vaccines and their importance to animal health and public health. Procedia in Vaccinology, 5: 127-136.
[4] Matthews, J. B., Geldhof, P., Tzelos, T., & Claerebout, E. (2016). Progress in the development of subunit vaccines for gastrointestinal nematodes of ruminants. Parasite Immunology, 38(12): 744-753.
[5] Kebede, B., Sori, T., & Kumssa, B. (2016). Review on current status of vaccines against parasitic diseases of animals. Journal of Veterinary Science and Technology, 7(3):1-8.
[6] Haslam, S. M., Restrepo, B. I., Obregón-Henao, A., Teale, J. M., Morris, H. R., & Dell, A. (2003). Structural characterization of the N-linked glycans from Taenia solium metacestodes. Molecular and Biochemical Parasitology, 126(1): 103-108.
[7] Claerebout, E., & Geldhof, P. (2020). Helminth vaccines in ruminants: From development to application. Veterinary Clinics: Food Animal Practice, 36(1): 159-171.
[8] Schetters, T., Dubey, J. P., Adrianarivo, A., Frankena, K., Romero, J. J., Pérez, E., Heuer, C., Nicholson, C., Russell, D., & Weston, J. (2004). Intervet symposium: bovine neosporosis. Veterinary Parasitology, 125(1-2): 137-146.
[9] Geldhof, P., De Maere, V., Vercruysse, J., & Claerebout, E. (2007). Recombinant expression systems: the obstacle to helminth vaccines? Trends in Parasitology, 23(11): 527-532.
[10] Hewitson, J. P., & Maizels, R. M. (2014). Vaccination against helminth parasite infections. Expert Review of Vaccines, 13(4): 473-487.
[11] Morrison, W., & Tomley, F. (2016). Development of vaccines for parasitic diseases of animals: Challenges and opportunities. Parasite Immunology, 38(12): 707-708.
[12] Diemert, D. J., Pinto, A. G., Freire, J., Jariwala, A., Santiago, H., Hamilton, R. G., Periago, M. V., Loukas, A., Tribolet, L., Mulvenna, J., Correa-Oliveira, R., Hotez, P. J., & Bethony, J. M. (2012). Generalized urticaria induced by the Na-ASP-2 hookworm vaccine: implica-tions for the development of vaccines against helminths. The Journal of Allergy and Clinical Immunology, 130(1): 169-176.
[13] Nisbet, A. J., Meeusen, E. N., González, J. F., & Piedrafita, D. M. (2016). Immunity to Haemonchus contortus and vaccine development. Advances in Parasitology, 93: 353-396.
[14] Claerebout, E., Knox, D. P., & Vercruysse, J. (2003). Current research and future prospects in the development of vaccines against gastrointestinal nematodes in cattle. Expert Review of Vaccines, 2(1): 147-157.
[15] Charlier, J., Velde, F. V., van der Voort, M., Van Meensel, J., Lauwers, L., Cauberghe, V., & Claerebout, E. (2015). ECONOHEALTH: Placing helminth infections of livestock in an economic and social context. Veterinary Parasitology, 212(1-2): 62-67.
[16] Jarrett, W. F., Jennings, F. W., McIntyre, W. I., Mulligan, W., & Urquhart, G. M. (1960). Immunological studies on Dictyocaulus viviparus infection; active immunization with whole worm vaccine. Immunology, 3(2): 135-144.
[17] Benitez-Usher, C., Armour, J., & Urquhart, G. M. (1976). Studies on immunisation of suckling calves with dictol. Veterinary Parasitology, 2(2): 209-222.
[18] Matthews, J. B., Davidson, A. J., Freeman, K. L., & French, N. P. (2001). Immunisation of cattle with recombinant acetylcholinesterase from Dictyocaulus viviparus and with adult worm ES products. International Journal for Parasitology, 31(3): 307-317.
[19] Strube, C., Haake, C., Sager, H., Schorderet Weber, S., Kaminsky, R., Buschbaum, S., Joekel, D., Schicht, S., Kremmer, E., Korrell, J., Schnieder, T., & von Samson-Himmelstjerna, G. (2015). Vaccination with recombinant paramyosin against the bovine lungworm Dicty-ocaulus viviparus considerably reduces worm burden and larvae shedding. Parasites and Vectors, 8(119):1-12.
[20] Holzhausen, J., Haake, C., Schicht, S., Hinse, P., Jordan, D., Kremmer, E., & Strube, C. (2018). Biological function of Dictyocaulus viviparus asparaginyl peptidase legumain-1 and its suitability as a vaccine target. Parasitology, 145(3):378-392.
[21] Bassetto, C. C., Silva, M. R. L., Newlands, G. F. J., Smith, W. D., Júnior, J. R., Martins, C. L., & Amarante, A. F. T. D. (2014a). Vaccination of grazing calves with antigens from the intestinal membranes of Haemonchus contortus: effects against natural challenge with Haemonchus placei and Haemonchus similis. International Journal for Parasitology, 44(10): 697-702.
[22] Meier, L., Torgerson, P. R., & Hertzberg, H. (2016). Vaccination of goats against Haemonchus contortus with the gut membrane proteins H11/H-gal-GP. Veterinary Parasitology, 229: 15-21.
[23] Tizard, I. R. (2019). Vaccines for Veterinarians E-Book. Elsevier Health Sciences.
[24] Fawzi, E. M., González-Sánchez, M. E., Corral, M. J., Alunda, J. M., & Cuquerella, M. (2015). Vaccination of lambs with the recombi-nant protein rHc23 elicits significant protection against Haemonchus contortus challenge. Veterinary Parasitology, 211(1-2): 54-59.
[25] Nisbet, A. J., McNeilly, T. N., Wildblood, L. A., Morrison, A. A., Bartley, D. J., Bartley, Y., Longhi, C., McKendrick, I. J., Palarea-Albaladejo, J., & Matthews, J. B. (2013). Successful immunization against a parasitic nematode by vaccination with recombinant proteins. Vaccine, 31(37): 4017-4023.
[26] Nisbet, A. J., McNeilly, T. N., Price, D. R. G., Oliver, E. M., Bartley, Y., Mitchell, M., Palarea-Albaladejo, J., & Matthews, J. B. (2019). The rational simplification of a recombinant cocktail vaccine to control the parasitic nematode Teladorsagia circumcincta. International Journal for Parasitology, 49(3-4): 257-265.
[27] Rinaldi, M., & Geldhof, P. (2012). Immunologically based control strategies for ostertagiosis in cattle: where do we stand? Parasite Immunology, 34(5): 254-264.
[28] Geldhof, P., Vercauteren, I., Gevaert, K., Staes, A., Knox, D. P., Vandekerckhove, J., Vercruysse, J., & Claerebout, E. (2003). Activa-tion-associated secreted proteins are the most abundant antigens in a host protective fraction from Ostertagia ostertagi. Molecular and Bi-ochemical Parasitology, 128(1): 111-114.
[29] Meyvis, Y., Geldhof, P., Gevaert, K., Timmerman, E., Vercruysse, J., & Claerebout, E. (2007). Vaccination against Ostertagia ostertagi with subfractions of the protective ES-thiol fraction. Veterinary Parasitology, 149(3-4): 239-245.
[30] Geldhof, P., Meyvis, Y., Vercruysse, J., & Claerebout, E. (2008). Vaccine testing of a recombinant activation-associated secreted protein (ASP1) from Ostertagia ostertagi. Parasite Immunology, 30(1): 57-60.
[31] Borloo, J., Geldhof, P., Peelaers, I., Van Meulder, F., Ameloot, P., Callewaert, N., Vercruysse, J., Claerebout, E., Strelkov, S. V., & Weeks, S. D. (2013a). Structure of Ostertagia ostertagi ASP-1: insights into disulfide-mediated cyclization and dimerization. Acta Crystallographica Section D: Biological Crystallography, 69(4): 493-503.
[32] Vlaminck, J., Borloo, J., Vercruysse, J., Geldhof, P., & Claerebout, E. (2015). Vaccination of calves against Cooperia oncophora with a double-domain activation-associated secreted protein reduces parasite egg output and pasture contamination. International Journal for Par-asitology, 45(4): 209-213.
[33] Toet, H., Piedrafita, D. M., & Spithill, T. W. (2014). Liver fluke vaccines in ruminants: strategies, progress and future opportunities. International Journal Foarasitology, 44(12): 915-927.
[34] Ortega-Vargas, S., Espitia, C., Sahagún-Ruiz, A., Parada, C., Balderas-Loaeza, A., Villa-Mancera, A., & Quiroz-Romero, H. (2019). Moderate protection is induced by a chimeric protein composed of leucine aminopeptidase and cathepsin L1 against Fasciola hepatica challenge in sheep. Vaccine, 37(24): 3234-3240.
[35] Jayaraj, R., Madhav, M. R., Kumarasamy, C., Ramesh, R., Shanker, R., Sabarimurugan, S., Norbury, L., Piedrafita, D., & Smooker, P. (2019). Protocol for systematic review and meta-analysis of immunity conferred by liver fluke recombinant protein cathepsin vaccines. Online Journal of Veterinary Research, 23(2): 126-134.
A Critical Review on Vaccine Development Against Helminths of Ruminants
How to cite this paper: Mahendra Pal, Zekiyos Gobena, Solomon Shiferaw, Tesfaye Rebuma. (2024) A Critical Review on Vaccine Development Against Helminths of Ruminants. Advance in Biological Research, 5(1), 1-7.
DOI: http://dx.doi.org/10.26855/abr.2024.03.001