IJCEMR

Article http://dx.doi.org/10.26855/ijcemr.2024.04.029

Research Progress of Different Modes of Transcranial Magnetic Stimulation in Patients with Consciousness Disturbance

TOTAL VIEWS: 849

Mengya Liu1, Dan Gao1, Bin Yang,1 Zhe Li1,2,3,*

1Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China. 

2Key Laboratory of Rehabilitation Medicine in Henan, Zhengzhou, Henan, China.

3Institute of Rehabilitation Medicine, Zhengzhou University, Zhengzhou, Henan, China.

*Corresponding author: Zhe Li

Published: May 27,2024

Abstract

The diagnosis and treatment of disorders of consciousness have been major challenges for clinicians. Transcranial magnetic stimulation (TMS) is a non-invasive, low-risk technique that offers various advantages. It has been widely developed in the field of neuropsychiatry. This paper reviews the mechanism of action of TMS on consciousness disorders, the common stimulation sites of TMS, and the application of different modes of TMS in consciousness disorders. There is more evidence to support the improvement of consciousness disturbance by high-frequency repetitive transcranial magnetic stimulation (rTMS), while there is less research on low-frequency repetitive transcranial magnetic stimulation and theta burst stimulation (TBS). In the future, it is necessary to further explore the pathogenesis of consciousness disorders, identify the optimal target and treatment parameters of TMS for consciousness disorders, and develop personalized TMS treatment plans for patients with consciousness disorders.

References

[1] Schiff, N. D. (2015). Cognitive motor dissociation following severe brain injuries. JAMA neurology, 72(12), 1413-1415.

[2] Schiff, N. D. (2010). Recovery of consciousness after brain injury: a mesocircuit hypothesis. Trends in neurosciences, 33(1), 1-9.

[3] Fridman, E. A., Beattie, B. J., Broft, A., Laureys, S., & Schiff, N. D. (2014). Regional cerebral metabolic patterns demonstrate the role of anterior forebrain mesocircuit dysfunction in the severely injured brain. Proceedings of the National Academy of Sciences, 111(17), 6473-6478.

[4] Vanhaudenhuyse, Audrey, et al. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain: A Journal of Neurology, vol. 133, Pt 1 (2010): 161-71. doi:10.1093/brain/awp313.

[5] Barker, A. T., Jalinous, R., & Freeston, I. L. (1985). Non-invasive magnetic stimulation of human motor cortex. The Lancet, 325(8437), 1106-1107.

[6] O'Neal, C. M., Schroeder, L. N., Wells, A. A., Chen, S., Stephens, T. M., Glenn, C. A., & Conner, A. K. (2021). Patient out-comes in disorders of consciousness following transcranial magnetic stimulation: a systematic review and meta-analysis of individual patient data. Frontiers in Neurology, 12, 694970.

[7] Stagg, C. J., Best, J. G., Stephenson, M. C., O'Shea, J., Wylezinska, M., Kincses, Z. T., ... & Johansen-Berg, H. (2009). Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. Journal of Neuroscience, 29(16), 5202-5206.

[8] Levkovitz, Y., & Segal, M. (2001). Aging affects transcranial magnetic modulation of hippocampal evoked potentials. Neurobiology of Aging, 22(2), 255-263.

[9] Levkovitz, Y., Grisaru, N., & Segal, M. (2001). Transcranial magnetic stimulation and antidepressive drugs share similar cellular effects in rat hippocampus. Neuropsychopharmacology, 24(6), 608-616.

[10] Ma, J., Zhang, Z., Kang, L., Geng, D., Wang, Y., Wang, M., & Cui, H. (2014). Repetitive transcranial magnetic stimulation (rTMS) influences spatial cognition and modulates hippocampal structural synaptic plasticity in aging mice. Experimental Gerontology, 58, 256-268.

[11] Meng, D., Xu, T., Guo, F., Yin, W., & Peng, T. (2009). The effects of high-intensity pulsed electromagnetic field on proliferation and differentiation of neural stem cells of neonatal rats in vitro. Journal of Huazhong University of Science and Technology [Medical Sciences], 29, 732-736.

[12] Pahk, K., & Lee, S. H. (2024). Effects of repetitive transcranial magnetic stimulation on improving cerebral blood flow in patients with middle cerebral artery steno-occlusion. Acta Neurologica Belgica, 124(1), 249-256.

[13] Shang, Y. Q., Xie, J., Peng, W., Zhang, J., Chang, D., & Wang, Z. (2018). Network-wise cerebral blood flow redistribution after 20 Hz rTMS on left dorso-lateral prefrontal cortex. European Journal of Radiology, 101, 144-148.

[14] Dong, L., Li, H., Dang, H., Zhang, X., Yue, S., & Zhang, H. (2023). Efficacy of non-invasive brain stimulation for disorders of consciousness: a systematic review and meta-analysis. Frontiers in Neuroscience, 17, 1219043.

[15] Tomeh, A., Yusof Khan, A. H. K., Inche Mat, L. N., Basri, H., & Wan Sulaiman, W. A. (2022). Repetitive transcranial magnetic stimulation of the primary motor cortex beyond motor rehabilitation: a review of the current evidence. Brain Sciences, 12(6), 761.

[16] Shen, L., Huang, Y., Liao, Y., Yin, X., Huang, Y., Ou, J., ... & Long, J. (2023). Effect of high‐frequency repetitive transcranial magnetic stimulation over M1 for consciousness recovery after traumatic brain injury. Brain and Behavior, 13(5), e2971.

[17] Cincotta, M., Giovannelli, F., Chiaramonti, R., Bianco, G., Godone, M., Battista, D., ... & Rossi, S. (2015). No effects of 20 Hz-rTMS of the primary motor cortex in vegetative state: a randomised, sham-controlled study. Cortex, 71, 368-376.

[18] Aflalo, T., Zhang, C., Revechkis, B., Rosario, E., Pouratian, N., & Andersen, R. A. (2022). Implicit mechanisms of intention. Current Biology, 32(9), 2051-2060.

[19] Xu, C., Wu, W., Zheng, X., Liang, Q., Bai, Y., & Xie, Q. (2023). Repetitive transcranial magnetic stimulation over the posterior parietal cortex improves functional recovery in nonresponsive patients: A crossover, randomized, double-blind, sham-controlled study. Frontiers in Neurology, 14, 1059789.

[20] Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: a review of its functional anatomy and behavioural correlates. Brain, 129(3), 564-583.

[21] Cavanna, A. E. (2007). The precuneus and consciousness. CNS Spectrums, 12(7), 545-552.

[22] Wenderoth, N., Debaere, F., Sunaert, S., & Swinnen, S. P. (2005). The role of anterior cingulate cortex and precuneus in the co-ordination of motor behaviour. European Journal of Neuroscience, 22(1), 235-246.

[23] Wu, H., Qi, Z., Wu, X., Zhang, J., Wu, C., Huang, Z., ... & Qin, P. (2022). Anterior precuneus related to the recovery of con-sciousness. NeuroImage: Clinical, 33, 102951.

[24] Thibaut, A., Di Perri, C., Chatelle, C., Bruno, M. A., Bahri, M. A., Wannez, S., ... & Laureys, S. (2015). Clinical response to tDCS depends on residual brain metabolism and grey matter integrity in patients with minimally conscious state. Brain Stimulation, 8(6), 1116-1123.

[25] Wu, X., Zou, Q., Hu, J., Tang, W., Mao, Y., Gao, L., ... & Yang, Y. (2015). Intrinsic functional connectivity patterns predict consciousness level and recovery outcome in acquired brain injury. Journal of Neuroscience, 35(37), 12932-12946.

[26] Yeager, B. E., Bruss, J., Duffau, H., Herbet, G., Hwang, K., Tranel, D., & Boes, A. D. (2022). Central precuneus lesions are associated with impaired executive function. Brain Structure and Function, 227(9), 3099-3108.

[27] Zhao DX, Guo YK, Wang XJ, Liu WQ, Mao JC, & Chen GQ et al. (2022). Repetitive transcranial magnetic stimulation for the treatment of arousal in patients with pDoC. International Journal of Neurology Neurosurgery, (02), 54-60.

[28] Kobayashi, M., & Pascual-Leone, A. (2003). Transcranial magnetic stimulation in neurology. The Lancet Neurology, 2(3), 145-156.

[29] Lapitskaya, N., Coleman, M. R., Nielsen, J. F., Gosseries, O., & de Noordhout, A. M. (2009). Disorders of consciousness: further pathophysiological insights using motor cortex transcranial magnetic stimulation. Progress in Brain Research, 177, 191-200.

[30] Seel, R. T., Sherer, M., Whyte, J., Katz, D. I., Giacino, J. T., Rosenbaum, A. M., ... & Zasler, N. (2010). Assessment scales for disorders of consciousness: evidence-based recommendations for clinical practice and research. Archives of Physical Medicine and Rehabilitation, 91(12), 1795-1813.

[31] Schnakers, C., Vanhaudenhuyse, A., Giacino, J., Ventura, M., Boly, M., Majerus, S., ... & Laureys, S. (2009). Diagnostic accu-racy of the vegetative and minimally conscious state: clinical consensus versus standardized neurobehavioral assessment. BMC Neurology, 9, 1-5.

[32] Sitt, J. D., King, J. R., El Karoui, I., Rohaut, B., Faugeras, F., Gramfort, A., ... & Naccache, L. (2014). Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state. Brain, 137(8), 2258-2270.

[33] Bodart, O., Gosseries, O., Wannez, S., Thibaut, A., Annen, J., Boly, M., ... & Laureys, S. (2017). Measures of metabolism and complexity in the brain of patients with disorders of consciousness. NeuroImage: Clinical, 14, 354-362.

[34] Lord, V., & Opacka-Juffry, J. (2016). Electroencephalography (EEG) measures of neural connectivity in the assessment of brain responses to salient auditory stimuli in patients with disorders of consciousness. Frontiers in Psychology, 7, 184253.

[35] Rosanova, M., Casarotto, S., Pigorini, A., Canali, P., Casali, A. G., & Massimini, M. (2012). Combining transcranial magnetic stimulation with electroencephalography to study human cortical excitability and effective connectivity. Neuronal Network Analysis: Concepts and Experimental Approaches, 435-457.

[36] Boly, M., Massimini, M., Garrido, M. I., Gosseries, O., Noirhomme, Q., Laureys, S., & Soddu, A. (2012). Brain connectivity in disorders of consciousness. Brain Connectivity, 2(1), 1-10.

[37] Ragazzoni, A., Pirulli, C., Veniero, D., Feurra, M., Cincotta, M., Giovannelli, F., ... & Miniussi, C. (2013). Vegetative versus minimally conscious states: a study using TMS-EEG, sensory and event-related potentials. PloS One, 8(2), e57069.

[38] Casali, A. G., Gosseries, O., Rosanova, M., Boly, M., Sarasso, S., Casali, K. R., ... & Massimini, M. (2013). A theoretically based index of consciousness independent of sensory processing and behavior. Science Translational Medicine, 5(198), 198ra105-198ra105.

[39] Bai, Y., Xia, X., Yang, Y., & Li, X. (2016). Evaluating the effect of repetitive transcranial magnetic stimulation on disorders of consciousness by using TMS-EEG. Frontiers in Neuroscience, 10, 211697.

[40] Lefaucheur, J. P., Aleman, A., Baeken, C., Benninger, D. H., Brunelin, J., Di Lazzaro, V., ... & Ziemann, U. (2020). Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018). Clinical neurophysiology, 131(2), 474-528.

[41] Lapitskaya, N., Gosseries, O., Delvaux, V., Overgaard, M., Nielsen, F., Maertens de Noordhout, A., ... & Laureys, S. (2009). Transcranial magnetic stimulation in disorders of consciousness. Reviews in the Neurosciences, 20(3-4), 235-250.

[42] Reithler, J., Peters, J. C., & Sack, A. T. (2011). Multimodal transcranial magnetic stimulation: using concurrent neuroimaging to reveal the neural network dynamics of noninvasive brain stimulation. Progress in Neurobiology, 94(2), 149-165.

[43] Luk, K. Y., Ouyang, H. X., & Pang, M. Y. C. (2022). Low-frequency rTMS over contralesional M1 increases ipsilesional corti-cal excitability and motor function with decreased interhemispheric asymmetry in subacute stroke: a randomized controlled study. Neural Plasticity, 2022.

[44] Puri, R., & Hinder, M. R. (2022). Response bias reveals the role of interhemispheric inhibitory networks in movement preparation and execution. Neuropsychologia, 165, 108120.

[45] Fitzpatrick, A. M., Dundon, N. M., & Valyear, K. F. (2019). The neural basis of hand choice: An fMRI investigation of the Pos-terior Parietal Interhemispheric Competition model. Neuroimage, 185, 208-221.

[46] Chen, J. M., Chen, Q. F., Wang, Z. Y., Chen, Y. J., Zhang, N. N., Xu, J. W., & Ni, J. (2022). Influence of high-frequency repeti-tive transcranial magnetic stimulation on neurobehavioral and electrophysiology in patients with disorders of consciousness. Neural Plasticity, 2022.

[47] Zhang, X. H., & Wang, Y. L. (2021). The clinical effect of repetitive transcranial magnetic stimulation on the disturbance of consciousness in patients in a vegetative state. Frontiers in Neuroscience, 15, 647517.

[48] He, F., Wu, M., Meng, F., Hu, Y., Gao, J., Chen, Z., ... & Pan, G. (2018). Effects of 20 Hz repetitive transcranial magnetic stimu-lation on disorders of consciousness: a resting-state electroencephalography study. Neural Plasticity, 2018.

[49] Legostaeva, L., Poydasheva, A., Iazeva, E., Sinitsyn, D., Sergeev, D., Bakulin, I., ... & Piradov, M. (2019). Stimulation of the angular gyrus improves the level of consciousness. Brain Sciences, 9(5), 103.

[50] Liu, X., Meng, F., Gao, J., Zhou, Z., Pan, G., & Luo, B. (2018). Behavioral and resting state functional connectivity effects of high frequency rTMS on disorders of consciousness: a sham-controlled study. Frontiers in Neurology, 9, 411000.

[51] Xia, X., Bai, Y., Yang, Y., Li, X., & He, J. (2017). Effects of 10 Hz repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex in disorders of consciousness. Frontiers in Neurology, 8, 243696.

[52] Liu, P., Gao, J., Pan, S., Meng, F., Pan, G., Li, J., & Luo, B. (2016). Effects of high-frequency repetitive transcranial magnetic stimulation on cerebral hemodynamics in patients with disorders of consciousness: a sham-controlled study. European Neurology, 76(1-2), 1-7.

[53] LU Chao, Fei Zhou, HU Xue-an, Luo Peng, Zhang Lei, LI Sanzhong, & Li B. (2016). Effects of low-frequency repetitive transcranial magnetic stimulation on arousal in patients with vegetative state after craniocerebral injury. Chinese Medical Review, 13(17), 69-72.

[54] Ma HB, Zhang R, Xiong JD, & Zhang PN. (2023). Effects of low-frequency repetitive transcranial magnetic stimulation on arousal in patients with persistent vegetative state after craniocerebral injury. Chinese Journal of Medical Medicine, 25(4), 614-617.

[55] Huang, Y. Z., Edwards, M. J., Rounis, E., Bhatia, K. P., & Rothwell, J. C. (2005). Theta burst stimulation of the human motor cortex. Neuron, 45(2), 201-206.

[56] Rounis, E., & Huang, Y. Z. (2020). Theta burst stimulation in humans: a need for better understanding effects of brain stimulation in health and disease. Experimental Brain Research, 238(7), 1707-1714.

[57] Zhou J, Hong C L, Hao X X, & Liu Y L. (2018). The effect of Theta explosive transcranial magnetic stimulation on motor function after stroke. Chinese Journal of Physical Medicine and Rehabilitation, 40(12), 952-956.

[58] Lefaucheur, J. P., Aleman, A., Baeken, C., Benninger, D. H., Brunelin, J., Di Lazzaro, V., ... & Ziemann, U. (2020). Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clinical Neurophysiology, 131(2), 474-528.

[59] Wu, M., Wu, Y., Yu, Y., Gao, J., Meng, F., He, F., ... & Luo, B. (2018). Effects of theta burst stimulation of the left dorsolateral prefrontal cortex in disorders of consciousness. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation, 11(6), 1382-1384.

[60] Huang Shaochun, Tian Li, Zhang Xinyan, Liu Li, Rao Jiang, & Zhu Huimin. (2021). The stimulating effect of explosive magnetic stimulation combined with multi-sensory stimulation on patients with consciousness disturbance. Journal of Clinical Neurology, (06), 440-444.

How to cite this paper

Research Progress of Different Modes of Transcranial Magnetic Stimulation in Patients with Consciousness Disturbance

How to cite this paper: Mengya Liu, Dan Gao, Bin Yang, Zhe Li. (2024) Research Progress of Different Modes of Transcranial Magnetic Stimulation in Patients with Consciousness Disturbance. International Journal of Clinical and Experimental Medicine Research8(2), 353-359.

DOI: http://dx.doi.org/10.26855/ijcemr.2024.04.029