Article http://dx.doi.org/10.26855/abr.2024.06.002

Cultured Complexity of Microbes and Attributes of Indian Fermented Beverages

TOTAL VIEWS: 1364

Mehul Chudasama1, Harsh P. Sharma2, Mahendra Pal3,*

1Department of Food Technology, Parul Institute of Technology, Parul University, Vadodara, Gujarat, India.

2Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India.

3Narayan Consultancy on Veterinary Public Health and Microbiology, Sapphire Lifestyle, Gujarat, India.

*Corresponding author: Mahendra Pal

Published: June 17,2024

Abstract

The review unveils the microbial intricacies behind traditional Indian fermented beverages, elucidating the metabolic pathways shaping their unique flavors, aromas, and health benefits. Amino acid and fatty acid metabolisms contribute to diverse aroma compounds, while organic acid production influences acidity and tanginess. Microbial diversity, strain-level variations, and synergistic interactions add layers to the fermentation process. Ingredient influences in beverages like Lassi, Chhang, Kanji, Toddy, Feni, Apong, Kodo Ko Jaanr, and Handia are dissected. The role of yeast such as Saccharomyces cerevisiae, Torulaspora delbruecki, Pichia anomala in fermentation and health aspects of probiotic microorganisms, such as Lactobacillus and Bifidobacterium, are highlighted. The article emphasizes the need for careful handling to maintain microbial viability and stability. It also explores the potential for innovation in commercial production while preserving the authenticity of traditional beverages. The article provides a concise overview of the intricate microbial tapestry that defines Indian fermented beverages.

References

[1] Hati, S., Patel, M., Mishra, B. K., & Das, S. (2019). Short-chain fatty acid and vitamin production potentials of Lactobacillus isolated from fermented foods of Khasi Tribes, Meghalaya, India. Annals of Microbiology, 69(11), 1191-1199.

[2] Tomar, S., Pant, K., Sharma, P., Sinha, S., & Mitra, D. (2023). Unravelling the hidden ethnic fermented treasure of the Himalayas—a review on the traditionally fermented beverages of the north-west Indian Himalayan Region. Food Chemistry Advances, 100254.

[3] Tamang, J. P. (2022). “Ethno‐microbiology” of ethnic Indian fermented foods and alcoholic beverages. Journal of Applied Microbiology, 133(1), 145-161.

[4] Rawat, J. M., Pandey, S., Debbarma, P., & Rawat, B. (2021). Preparation of alcoholic beverages by tribal communities in the Indian Himalayan region: A review on traditional and ethnic consideration. Frontiers in Sustainable Food Systems, 5, 672411.

[5] Liburdi, K., Bernini, R., & Esti, M. (2020). Fermented beverages: Geographical distribution and bioactive compounds with health benefits. In New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 131-151). Elsevier Publication.

[6] Sharma, H. P., Madan, Aditya., & Joshi, D. C. (2019). Clarifying Agents. Encyclopedia of Food Chemistry (pp. 53-60). Elsevier Publi-cation.

[7] Jákl, J. (2021). Twak: Production and Types of Palm Wine. In Alcohol in Early Java (pp. 15-49). Brill.

[8] Detto, K., Aboya, M. J. L., Philomène, K. A., Harding, K. F., & Marcellin, D. K. (2019). Analysis of physicochemical parameters and screening of microorganisms to formulate ferments from oil palm sap (Elaeis guineensis) in the korhogo area. International Journal of Current Microbiology and Applied Sciences, 8(8), 3005-3013.

[9] Grüning, N. M., & Ralser, M. (2021). Glycolysis: how a 300yr long research journey that started with the desire to improve alcoholic beverages kept revolutionizing biochemistry. Current Opinion in Systems Biology, 28, 100380.

[10] Leng, L., Yuan, Z., Pan, R., Su, X., Wang, H., Xue, J., Zhuang, K., Gao, J., Chen, Z., Lin, H., Xie, W., Li, H., Chen, Z., Ren, K., Zhang, X., Wang, W., Jin, Z., Wu, S., Wang, X., Yuan, Z., Xu, H., Chow, H. & Zhang, J. (2022). Microglial hexokinase 2 deficiency increases ATP generation through lipid metabolism leading to β-amyloid clearance. Nature Metabolism, 4(10), 1287-1305.

[11] Gupta, R., Gupta, N., Gupta, R., & Gupta, N. (2021). Glycolysis and Gluconeogenesis. Fundamentals of Bacterial Physiology and Metabolism, 267-287.

[12] Mai, V. Q., & Meere, M. (2021). Modelling the phosphorylation of glucose by human hexokinase I. Mathematics, 9(18), 2315.

[13] Cordente, A. G., Schmidt, S., Beltran, G., Torija, M. J., & Curtin, C. D. (2019). Harnessing yeast metabolism of aromatic amino acids for fermented beverage bioflavouring and bioproduction. Applied Microbiology and Biotechnology, 103, 4325-4336.

[14] Choi, K. Y. (2021). Nitrogen-Neutral Amino Acids Refinery: Deamination of amino acids for bio-alcohol and ammonia production. Chemical and Bio-engineering Reviews, 8(3), 213-226.

[15] Torrens-Spence, M. P., Chiang, Y. C., Smith, T., Vicent, M. A., Wang, Y., & Weng, J. K. (2020). Structural basis for divergent and convergent evolution of catalytic machineries in plant aromatic amino acid decarboxylase proteins. Proceedings of the National Academy of Sciences, 117(20), 10806-10817.

[16] Omidiran, A. T., & Jenfa, M. D. (2023). Occurrence of biogenic amines in fermented foods. In Indigenous Fermented Foods for the Tropics (pp. 539-548). Academic Press.

[17] Mostafa, S., Wang, Y., Zeng, W., & Jin, B. (2022). Floral scents and fruit aromas: Functions, compositions, biosynthesis, and regulation. Frontiers in Plant Science, 13, 860157.

[18] Torrens-Spence, M. P., Glinkerman, C. M., Günther, J., & Weng, J. K. (2021). Imine chemistry in plant metabolism. Current Opinion in Plant Biology, 60, 101999.

[19] Poeggeler, B., Singh, S. K., & Pappolla, M. A. (2022). Tryptophan in nutrition and health. International Journal of Molecular Sciences, 23(10), 5455.

[20] Xu, L., Zang, E., Sun, S., & Li, M. (2022). Main flavor compounds and molecular regulation mechanisms in fruits and vegetables. Critical Reviews in Food Science and Nutrition, 1-21.

[21] Phan, Q. K. (2021). Lipid Profile in Pinot Noir Wine: Contributions to Taste and Mouthfeel Perception, Impacts of Winemaking Techniques, and Potential Use as Markers for Identifying Wine Origin.

[22] Gupta, R., Gupta, N., Gupta, R., & Gupta, N. (2021). Lipid biosynthesis and degradation. Fundamentals of Bacterial Physiology and Metabolism, 491-523.

[23] Moffett, J. R., Puthillathu, N., Vengilote, R., Jaworski, D. M., & Namboodiri, A. M. (2020). Acetate revisited: A key biomolecule at the nexus of metabolism, epigenetics and oncogenesis—Part 1: Acetyl-CoA, acetogenesis and acyl-CoA short-chain synthetases. Frontiers in Physiology, 11, 580167.

[24] Que, Z., Jin, Y., Huang, J., Zhou, R., & Wu, C. (2023). Flavor compounds of traditional fermented bean condiments: Classes, synthesis, and factors involved in flavor formation. Trends in Food Science & Technology.

[25] Prusova, B., Humaj, J., Sochor, J., & Baron, M. (2022). Formation, losses, preservation and recovery of aroma compounds in the wine-making process. Fermentation, 8(3), 93.

[26] Shi, X., Wang, X., Hou, X., Tian, Q., & Hui, M. (2022). Gene mining and flavour metabolism analyses of Wickerhamomyces anomalus Y-1 isolated from a Chinese liquor fermentation starter. Frontiers in Microbiology, 13, 891387.

[27] Bangar, S. P., Suri, S., Trif, M., & Ozogul, F. (2022). Organic acids production from lactic acid bacteria: A preservation approach. Food Bioscience, 46, 101615.

[28] Frizzell, N. (2022). 10 CHAPTER The Tricarboxylic Acid Cycle. Medical Biochemistry-E-Book, 129.

[29] Tejedor-Sanz, S., Li, S., Kundu, B., & Ajo-Franklin, C. (2022). Discovery of extracellular electron uptake by the lactic acid bacterium Lactiplantibacillus plantarum.

[30] De Vuyst, L., & Leroy, F. (2020). Functional role of yeasts, lactic acid bacteria and acetic acid bacteria in cocoa fermentation processes. FEMS Microbiology Reviews, 44(4), 432-453.

[31] Behera, B. C., Mishra, R., & Mohapatra, S. (2021). Microbial citric acid: Production, properties, application, and future perspectives. Food Frontiers, 2(1), 62-76.

[32] Börekçi, B. S., Kaban, G., & Kaya, M. (2021). Citric acid production of yeasts: an overview. The EuroBiotech Journal, 5(2), 79-91.

[33] Xu, J., Guo, L., Zhao, N., Meng, X., Zhang, J., Wang, T., Wei, X. & Fan, M. (2023). Response mechanisms to acid stress of ac-id-resistant bacteria and biotechnological applications in the food industry. Critical Reviews in Biotechnology, 43(2), 258-274.

[34] Puig-Castellví, F., Pacheco-Tapia, R., Deslande, M., Jia, M., Andrikopoulos, P., Chechi, K., Bonnefond, A., Froguel, P., & Dumas, M. E. (2023). Advances in the integration of metabolomics and metagenomics for human gut microbiome and their clinical applications. TrAC Trends in Analytical Chemistry, 117248.

[35] Wang, Y., Chen, Q., Li, L., Chen, S., Zhao, Y., Li, C., Xiang, H., Wu, Y., & Sun‐Waterhouse, D. (2023). Transforming the fermented fish landscape: Microbiota enable novel, safe, flavorful, and healthy products for modern consumers. Comprehensive Reviews in Food Science and Food Safety.

[36] Okoye, C. O., Dong, K., Wang, Y., Gao, L., Li, X., Wu, Y., & Jiang, J. (2022). Comparative genomics reveals the organic acid biosyn-thesis metabolic pathways among five lactic acid bacterial species isolated from fermented vegetables. New Biotechnology, 70, 73-83.

[37] Mbye, M., Baig, M. A., Abu Qamar, S. F., El-Tarabily, K. A., Obaid, R. S., Osaili, T. M., Al-Nabulsi, A. A., Turner, M. S., Shah, N. P., & Ayyash, M. M. (2020). Updates on understanding of probiotic lactic acid bacteria responses to environmental stresses and highlights on proteomic analyses. Comprehensive Reviews in Food Science and Food Safety, 19(3), 1110-1124.

[38] Zheng, X., Shi, X., & Wang, B. (2021). A review on the general cheese processing technology, flavor biochemical pathways and the influence of yeasts in cheese. Frontiers in Microbiology, 12, 703284. https://doi.org/10.3389/fmicb.2021.703284.

[39] Swiegers, J. H., Bartowsky, E. J., Henschke, P. A., & Pretorius, I. (2005). Yeast and bacterial modulation of wine aroma and flavour. Australian Journal of Grape and Wine Research, 11(2), 139-173. https://doi.org/10.1111/j.1755-0238.2005.tb00285.x.

[40] de Souza, E. L., de Oliveira, K. Á., & de Oliveira, M. E. (2023). Influence of lactic acid bacteria metabolites on physical and chemical food properties. Current Opinion in Food Science, 49, 100981. https://doi.org/10.1016/j.cofs.2022.100981.

[41] Alekseeva, A. Y., Groenenboom, A. E., Smid, E. J., & Schoustra, S. E. (2021). Eco-evolutionary dynamics in microbial communities from spontaneous fermented foods. International Journal of Environmental Research and Public Health, 18(19), 10093.

https://doi.org/10.3390/ijerph181910093.

[42] Nozhevnikova, A. N., Russkova, Y. I., Litti, Y. V., Parshina, S. N., Zhuravleva, E. A., & Nikitina, A. A. (2020). Syntrophy and inter-species electron transfer in methanogenic microbial communities. Microbiology, 89, 129-147. https://doi.org/10.1134/S0026261720020101.

[43] Canon, F., Nidelet, T., Guédon, E., Thierry, A., & Gagnaire, V. (2020). Understanding the mechanisms of positive microbial interactions that benefit lactic acid bacteria co-cultures. Frontiers in Microbiology, 11, 2088. https://doi.org/10.3389/fmicb.2020.02088.

[44] Saadoun, J. H., Calani, L., Cirlini, M., Bernini, V., Neviani, E., Del Rio, D., Galaverna, G., & Lazzi, C. (2021). Effect of fermentation with single and co-culture of lactic acid bacteria on okara: evaluation of bioactive compounds and volatile profiles. Food & Function, 12(7), 3033-3043. https://doi.org/10.1039/D0FO02916E.

[45] Canon, F., Mariadassou, M., Maillard, M. B., Falentin, H., Parayre, S., Madec, M. N., Valence F., Henry G, Laroute V., Daveran-Mingot M. L., Cocaign-Bousquet M., Thierry A., & Gagnaire, V. (2020). Function-driven design of lactic acid bacteria co-cultures to produce new fermented food associating milk and lupin. Frontiers in Microbiology, 11, 584163. https://doi.org/10.3389/fmicb.2020.584163.

[46] Tangyu, M., Fritz, M., Ye, L., Aragão Börner, R., Morin-Rivron, D., Campos-Giménez, E., Bolten, C. J., Bogicevic, B., & Wittmann, C. (2022). Co-cultures of Propionibacterium freudenreichii and Bacillus amyloliquefaciens cooperatively upgrade sunflower seed milk to high levels of vitamin B12 and multiple co-benefits. Microbial Cell Factories, 21(1), 1-23. https://doi.org/10.1186/s12934-022-01773-w.

[47] Canon, F., Maillard, M. B., Famelart, M. H., Thierry, A., & Gagnaire, V. (2022). Mixed dairy and plant-based yogurt alternatives: Im-proving their physical and sensorial properties through formulation and lactic acid bacteria cocultures. Current Research in Food Science, 5, 665-676. https://doi.org/10.1016/j.crfs.2022.03.011.

[48] Dan, T., Hu, H., Tian, J., He, B., Tai, J., & He, Y. (2023). Influence of Different Ratios of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus on Fermentation Characteristics of Yogurt. Molecules, 28(5), 2123. https://doi.org/10.3390/molecules28052123.

[49] Zhang, Y., Zheng, T., Ma, D., Shi, P., Zhang, H., Li, J., & Sun, Z. (2023). Probiotics Bifidobacterium lactis M8 and Lactobacillus rham-nosus M9 prevent high blood pressure via modulating the gut microbiota composition and host metabolic products. Msystems, 8(6), e00331-23. https://doi.org/10.1128/msystems.00331-23.

[50] Szajnar, K., Znamirowska, A., & Kuźniar, P. (2020). Sensory and textural properties of fermented milk with viability of Lactobacillus rhamnosus and Bifidobacterium animalis ssp. lactis Bb-12 and increased calcium concentration. International Journal of Food Properties, 23(1), 582-598. https://doi.org/10.1080/10942912.2020.1748050.

[51] Kadja, L., Dib, A. L., Lakhdara, N., Bouaziz, A., Espigares, E., & Gagaoua, M. (2021). Influence of three probiotics strains, lactobacillus rhamnosus GG, Bifidobacterium animalis subsp. lactis BB-12 and Saccharomyces boulardii CNCM I-745 on the biochemical and Hae-matological profiles and body weight of healthy rabbits. Biology, 10(11), 1194. https://doi.org/10.3390/biology10111194.

[52] Khunte, P., Sharma, A., Shrivastav, A., & Dilip, S. (2022). Studies on development of synbiotic banana (Musa acuminata Grand Nain) lassi. The Pharma Innovation, 11(10), 295-297.

[53] Kumar, A., Hussain, S. A., Prasad, W., Singh, A. K., & Singh, R. R. B. (2021). Effect of oxygen tolerant probiotic strain, stabilizers and copper addition on the storage stability of Aloe vera supplemented synbiotic lassi. Future Foods, 3, 100021.

https://doi.org/10.1016/j.fufo.2021.100021.

[54] Abebaw, G. (2021). Review on structure, functional and nutritional composition of barley (Hordeum vulgare). Journal of Nutrition and Food Processing, 4(2). https://doi.org/10.31579/2637-8914%2F046.

[55] Cereda, M. P. (2024). Starch hydrolysis: physical, acid, and enzymatic processes. In Starch Industries: Processes and Innovative Products in Food and Non-Food Uses (pp. 75-113). Academic Press. https://doi.org/10.1016/B978-0-323-90842-9.00016-9.

[56] Lata, P., Sharma, K. B., Rangra, S., & Kumari, R. (2023). Probiotic characterization of Saccharomyces cerevisiae Y196 and Y197 isolated from rice chhang-a fermented beverage of Lahaul Spiti. Journal of Microbiology, Biotechnology and Food Sciences, 12(5), e5817-e5817. https://doi.org/10.55251/jmbfs.5817.

[57] Blando, F., Marchello, S., Maiorano, G., Durante, M., Signore, A., Laus, M. N., Soccio, M., & Mita, G. (2021). Bioactive compounds and antioxidant capacity in anthocyanin-rich carrots: A comparison between the black carrot and the Apulian landrace “Polignano” carrot. Plants, 10(3), 564. https://doi.org/10.3390/plants10030564.

[58] Manzoor, M., Sharma, V., Singh, D., Sohal, J. S., Aseri, G. K., Khare, N., Vij, S., & Sharma, D. (2021). Functional Pediococcus acidilactici BC1 for the revitalization of ethnic black carrot kanji of Indian subcontinent. Biocatalysis and Agricultural Biotechnology, 31, 101921. https://doi.org/10.1016/j.bcab.2021.101921.

[59] Paul, C., Mishu, I. D., Miah, M. I., Bari, M. L., Rahman, S. R., & Malek, M. A. (2023). Isolation, identification and probiotic potential of lactic acid bacteria and yeasts from commercial yogurt and homemade non-dairy fermented food “KANJI”. International Journal of Gas-tronomy and Food Science, 34, 100787. https://doi.org/10.1016/j.ijgfs.2023.100787.

[60] Das, G., Tantengco, O. A. G., Tundis, R., Robles, J. A. H., Loizzo, M. R., Shin, H. S., & Patra, J. K. (2022). Glucosinolates and Omega-3 fatty acids from mustard seeds: Phytochemistry and pharmacology. Plants, 11(17), 2290.

[61] Shakour, Z. T., Shehab, N. G., Gomaa, A. S., Wessjohann, L. A., & Farag, M. A. (2022). Metabolic and biotransformation effects on dietary glucosinolates, their bioavailability, catabolism and biological effects in different organisms. Biotechnology Advances, 54, 107784. 

[62] Aparnna, V. P., Kumar Chauhan, A., & Singh, S. (2024). Palm-Based Beverages Around the World: A Review. Current Nutrition & Food Science, 20(1), 16-27. https://doi.org/10.2174/1573401319666230417083106.

[63] T Hewa Pathirana, H. P. D., Wijesekara, H. T. R., De Costa, D. M., Kumara, U. M. A., Yalegama, L. L. W. C., & Weerasinghe, T. M. S. G. (2023). Evaluation of microbial quality of unfermented coconut sap with different collection methods. Carpathian Journal of Food Science & Technology, 15(4). https://doi.org/10.34302/crpjfst/2023.15.4.7.

[64] Reina, L. J. C., Durán-Aranguren, D. D., Forero-Rojas, L. F., Tarapuez-Viveros, L. F., Durán-Sequeda, D., Carazzone, C., & Sierra, R. (2022). Chemical composition and bioactive compounds of cashew (Anacardium occidentale) apple juice and bagasse from Colombian varieties. Heliyon, 8(5). https://doi.org/10.1016/j.heliyon.2022.e09528.

[65] Rêgo, E. S. B., Rosa, C. A., Freire, A. L., de Resende Machado, A. M., Gomes, F. D. C. O., da Costa, A. S. P., da Costa Mendonça, M., Hernández-Macedo, M. L., & Padilha, F. F. (2020). Cashew wine and volatile compounds produced during fermentation by non-Saccharomyces and Saccharomyces yeast. LWT, 126, 109291.

[66] Toure, A., Soro, Y. R., Zoro, A. F., Djah, L. A. K., & Coulibaly, A. (2020). Assessment of Cashew Apple Juice on Fermentative Activity of Two Lactic Bacteria in Production of Yoghurt. European Journal of Agriculture and Food Sciences, 2(3).

https://doi.org/10.24018/ejfood.2020.2.3.49.

[67] de Carvalho Miranda, J. C., Ponce, G. H. S. F., Arellano-Garcia, H., Maciel Filho, R., & Maciel, M. R. W. (2020). Process design and evaluation of syngas-to-ethanol conversion plants. Journal of Cleaner Production, 269, 122078. 

https://doi.org/10.1016/j.jclepro.2020.122078.

[68] Tsuyukubo, M., Ookura, T., & Kasai, M. (2013). Distribution of starch-degrading enzymes in rice grains of different cultivars and elution behavior during cooking. Food Science and Technology Research, 19(2), 303-311.

[69] Borah, T., Gogoi, B., Khataniar, A., Gogoi, M., Das, A., & Borah, D. (2019). Probiotic characterization of indigenous Bacillus velezensis strain DU14 isolated from Apong, a traditionally fermented rice beer of Assam. Biocatalysis and Agricultural Biotechnology, 18, 101008. https://doi.org/10.1016/j.bcab.2019.01.046.

[70] Sarma, H. K., & Parasar, D. P. (2019). Traditional fermentation by the Rabha-Hasong, Mishing, and Karbi communities of Assam and prospects of value addition for enhancement of nutritional qualities in ethnic foods. Technol Value Addit Food Prod Process, 271. 

[71] Das, S., Deb, D., Adak, A., & Khan, M. R. (2019). Exploring the microbiota and metabolites of traditional rice beer varieties of Assam and their functionalities. 3 Biotech, 9, 1-10. https://doi.org/10.1007/s13205-019-1702-z.

[72] Handique, P. (2019). Microbial enumeration and analysis of antioxidant activity of starter cultures used for rice beer preparation unique to some ethnic communities of Assam. International Journal of Science and Healthcare Research, 4, 6-11. 

[73] Das, A. J., Khawas, P., Miyaji, T., & Deka, S. C. (2014). HPLC and GC‐MS analyses of organic acids, carbohydrates, amino acids and volatile aromatic compounds in some varieties of rice beer from northeast India. Journal of the Institute of Brewing, 120(3), 244-252. https://doi.org/10.1002/jib.134.

[74] Patil, R. B., Vijayalakshmi, K. G., & Vijayalakshmi, D. (2020). Physical, functional, nutritional, phytochemical and antioxidant properties of kodo millet (Paspalum scrobiculatum). Journal of Pharmacognosy and Phytochemistry, 9(5), 2390-2393. 

[75] Thilagavathi, T., Kanchana, S., Banumathi, P., Hemalatha, G., Vanniarajan, C., Sundar, M., & Ilamaran, M. (2015). Physico-chemical and functional characteristics of selected millets and pulses. Indian Journal of Science and Technology, 8(7), 147-155.

https://doi.org/10.17485/ijst/2015/v8iS7/74789.

[76] Amadou, I. (2019). Millet based fermented beverages processing. In Fermented beverages (pp. 433-472). Woodhead Publishing.

https://doi.org/10.1016/B978-0-12-815271-3.00011-7.

[77] Thapa, S., & Tamang, J. P. (2006). Microbiological and physio-chemical changes during fermentation of kodo ko jaanr, a traditional al-coholic beverage of the Darjeeling hills and Sikkim. Indian Journal of Microbiology, 46(4), 333-341.

[78] Thapa, S., & Tamang, J. P. (2004). Product characterization of kodo ko jaanr: fermented finger millet beverage of the Himalayas. Food Microbiology, 21(5), 617-622. doi:10.1016/j.fm.2004.01.004.

[79] Sethi, M., Ok, A., Dash, J., Parida, D., Kar, S., Mishra, S., Minz, A. P., Padhi, A., Das, K. R., Pradhan, B., & Senapati, S. (2024). Whole Genome Mining and Characterization of a New Probiotic Strain Levilactobacillus brevis ILSH3 from Handia: An Ethnic Fermented Beverage of Odisha, India. Probiotics and Antimicrobial Proteins, 1-19. https://doi.org/10.1007/s12602-024-10217-3.

[80] Maji, J., Mukhopadhyay, B. C., Mitra, S., & Biswas, S. R. (2018). Molecular characterization of Yeasts and Bacteria isolated from Handia, an Indian traditional rice fermented alcoholic beverage. American Journal of Current Microbiology, 6(1), 1-12. 

[81] Ray, R. C., & Swain, M. R. (2013). Indigenous fermented foods and beverages of Odisha, India: an overview. Indigenous Fermented Foods of South Asia, 1-6. 

[82] Ağagündüz, D., Yılmaz, B., Şahin, T. Ö., Güneşliol, B. E., Ayten, Ş., Russo, P., Spano, G., Rocha, J., M., Bartkiene, E., & Özogul, F. (2021). Dairy lactic acid bacteria and their potential function in dietetics: The food–gut-health axis. Foods, 10(12), 3099.

https://doi.org/10.3390/foods10123099.

[83] di Vito, R., Conte, C., & Traina, G. (2022). A Multi-Strain Probiotic Formulation Improves Intestinal Barrier Function by the Modulation of Tight and Adherent Junction Proteins. Cells, 11(16), 2617. https://doi.org/10.3390/cells11162617.

[84] Markowiak-Kopeć, P., & Śliżewska, K. (2020). The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients, 12(4), 1107. https://doi.org/10.3390/nu12041107.

[85] Melini, F., Melini, V., Luziatelli, F., Ficca, A. G., & Ruzzi, M. (2019). Health-promoting components in fermented foods: an up-to-date systematic review. Nutrients, 11(5), 1189. https://doi.org/10.3390/nu11051189.

[86] Xiang, H., Sun-Waterhouse, D., Waterhouse, G. I., Cui, C., & Ruan, Z. (2019). Fermentation-enabled wellness foods: A fresh perspective. Food Science and Human Wellness, 8(3), 203-243. https://doi.org/10.1016/j.fshw.2019.08.003.

[87] Samtiya, M., Aluko, R. E., Puniya, A. K., & Dhewa, T. (2021). Enhancing micronutrients bioavailability through fermentation of plant-based foods: A concise review. Fermentation, 7(2), 63. https://doi.org/10.3390/fermentation7020063.

How to cite this paper

Cultured Complexity of Microbes and Attributes of Indian Fermented Beverages

How to cite this paper: Mehul Chudasama, Harsh P. Sharma, Mahendra Pal. (2024) Cultured Complexity of Microbes and Attributes of Indian Fermented BeveragesAdvance in Biological Research5(1), 8-18.

DOI: http://dx.doi.org/10.26855/abr.2024.06.002