TOTAL VIEWS: 15199
The waste management and crop residues are serious problems in the world. Major crops like rice, wheat, sugarcane residues burning causes environmental pollution like smog. The best technique to manage all kind of waste is vermicomposting that is environment friendly, economically viable and socially acceptable approach which convert garbage in to black gold that is called vermi-fertilizer. Compositing process is mainly involved for increased transformation of organic decay within stable organic compound via the interaction of beneficial microorganisms under regulate increased temperature 45°C-60°C that permits sanitation of organic decay by eradication harmful microbes. In preparation of vermicompost, organic waste products are being oxidized via the mutual activity of useful microbes and earthworm. Vermi-fertilizer is rich source of all macro and micro nutrients, i.e., Nitrogen (N), Phosphorous (P), Potassium (K), Iron (Fe), Zinc (Zn), Copper (Cu), manganese (Mg), growth promoters and regulators hormones like Auxin, gibberellin, enzymes i.e., protease, lipase, chitinase, beneficial bacterias i.e., Bacillus subtilis. Almost 3,000 species of earthworms are identified for vermicomposting, in which Eisenia fetida, Eisenia Andrei, Eudrilus eugeniae and Perionyn excavates are most suitable for vermicompost preparation.
[1] Pimentel, D. (1996). Green Revolution and chemical hazards. Science Total Environment, 188, 86-98.
[2] Curry, J. P. (1987). The invertebrate fauna of grassland and its influence on productivity. The composition of the fauna. Grass Forage Science, 42, 103-120.
[3] Edwards, C. A. (1998). The use of earthworm in the breakdown and management of organic waste. Earthworm in Ecology. ACA Press LLC, Boca Raton, FL, 327-354.
[4] Orozco, F. H., Cegarra, J., Trujillo, L. M., & Roig. A. (1996). Vermicomposting of coffee pulp using the earthworm Eisenia fetida: effects on C and N contents and the availability of nutrients. Biology and Fertility of Soils, 22, 162-166.
[5] Shi-wei, Z., & Fu-Zhen, H. (1991). The nitrogen uptake efficiency from 15N labeled chemical fertilizer in the presence of earthworm manure (cast). In: Advances in Management and Conservation of Soil Fauna (Veeresh G.K. et al., Eds.) Oxford and IBH publishing Company, Bombay, 539-542.
[6] Tomati, U., Grappelli, A., & Galli, E. (1987). The presence of growth regulators in earthworm worked wastes. In: Proceeding of International Symposium on ‘Earthworms’ (Bonvicini-Paglioi, A.M., Omodeo, P., Eds.), Bologna-Carpi, March 31-April 4, 1985. pp. 423-436.
[7] Edwards, C., & Burrows, I. (1988). The potential of earthworm compost as plant growth media, 211-219. In: C. Edwards and E. Neuhauser (eds.). Earthworms in waste and environmental management. Academic, The Hague, The Netherlands.
[8] Atiyeh, R. M., Subler, S., Edwards, C.A., & Metzger, J. (1999). Growth of tomato plants in horticultural potting media amended with vermicompost. Pedobiologia, 43, 724-728.
[9] Zucconi, F., & Bertoldi, M. D. (1987). Composting specifications for production and characterization of compost from MSW. In: De Bertoldi, M. P. Ferranti, P. L. Hermite, and F. Zucconi, (eds.), Compost, Production Quality and Use, Elsevier Applied Science, London. 30-50.
[10] Dominguez, J., Briones, M. J. L., & Mato, S. (1997). Effect of diet on growth and reproduction of Eisenia Andrei (Oligochaeta Lumbricidae). Pedobiologia, 41, 566-576.
[11] Lores, M., Brandon, M. G., Diaz, D. P., & Domiguez, J. (2006). Using FAME profiles for characterization of animal wastes and vermicomposts. Soil Biology and Biochemistry, 38, 2993-2996.
[12] Oliver, G. S. (1937). Our Friend the Earthworm. Gardener’s Book Club, Volume (8) California.
[13] Barrett, T. J. (1942). Harnessing the Earthworms. Faber and Faber, London.
[14] Bouche, M. B. (1987). Strategies lumbriciennes, In: U. Lohm and T. Persson, (eds.). Soil Organisms as components of Ecosys-tems, Biology Bulletin, 25, 122-123.
[15] Bouche, M. B. (1977). Strategies lumbriciennes, In: U. Lohm and T. Persson, (eds.). Soil Organisms as components of Ecosys-tems. Biology Bulletin, 25, 122-123.
[16] Sangwan, P., & Kaushik, C. P. (2007). Nutrient recovery and management of industrial wastes by employing earthworms: a case study of sugar mill sludge. Science of the Total Environment, 99, 8689-8704.
[17] Garg, V. K., & Kaushik, P. (2005). Vermistabilization of textile mill sludge spiked with poultry droppings by an epigeic earthworm Eisenia foetida. Bioresource Technology, 96, 1063-1071.
[18] Suthar, S. (2007). Vermicomposting potential of Perionyx sansibaricus (Perrier) in different waste materials. Bioresource Technology, 98, 1231-1237.
[19] Talashilkar, S. C., Bhangarath, P. P., & Mehta, V. B. (1999). Changes in chemical properties during composting of organic residues as influenced by earthworm activity, Journal of the Indian Society of Soil Science, 47, 50-53.
[20] Edwards, C. A., Burrows I., Fletcher, K. E., & Jones, B. A. (1985). The use of earthworms for composting farm wastes. In: Gasser, J. K. R. (Ed.), Composting of Agriculture and Other Wastes. Elsevier, Amsterdam, 229-242.
[21] Edwards, C. A. (1988). Breakdown of animal, vegetable, and industrial organic wastes by earthworms, In: C.A. Edwards, and E.F. Newhauser (eds.), Earthworms Waste and Environmental Management, SPB Publishing, The Hague, the Netherlands., 21-23.
[22] Bansal, S., & Kapoor, K. K. (2000). Vermicomposting of crop residues and cattle dung with Eisenia foetida. Bioresource Technology, 73, 95-98.
[23] Kaushik, P., & Garg, V. K. (2003). Vermicomposting of mixed solid textile mill sludge and cow dung with epigeic earthworm Eisenia fetida. Bioresource Technology, 90, 311-316.
[24] Chan, P. L. S., & Griffiths, D. A. (1988). The vermicomposting of pretreated pig manure. Biological Wastes, 24, 57-69.
[25] Butt, K. R. (1993). Utilization of solid paper mill sludge and spent brewery yeast as a feed for soil dwelling earthworms. Bio-resource Technology, 44, 105-107.
[26] Gupta R., Mutiyar, P. K., Rawat, N. K., Saini, M. S., & Garg, V. K. (2007). Development of a water hyacinth based vermireactor using an epigeic earthworm Eisenia foetida. Bioresource Technology, 98, 2605-2610.
[27] Hand, P., Hayes, W. A., Frankland, J. C., & Satchell, J. E. (1988). The vermicomposting of cow slurry. Pedobiologia, 31, 199-209.
[28] Dominguez, J., & Edwards, C. A. (2011). Relationship between Composting and vermi composting In: C. A. Edwards., N. Q. Arancon, and R. Sherman (eds.), Vermiculture Technology; Earthworm, Organic Wastes, and Environmental Management. CRC Press Taylor and Francis Group, London. 11.
[29] Cook, S. M. F., & Linden, D. R. (1996). Effect of food type and placement on earthworm (Aporrectodea tuberculata) burrowing and soil turnover. Biology and Fertility of Soils, 21(3), 201-206.
[30] Dominguez, J., & Edwards, C. A. (2004). Vermicomposting organic wastes: A review. In: Soil Zoology for Sustainable De-velopment in the 21st Century (Shakir, S. H., Mikhail, W. Z. A., Eds).
[31] Aslam, Z., Ahmad, A., Bellitürk, K., Iqbal, N., Idrees, M., Rehman, W. U., Akbar, G., Tariq, M., Raza, M., Riasat, S., & Rehman, S. U. (2020). Effects of vermicompost, vermi-tea and chemical fertilizer on morpho-physiological characteristics of tomato (Solanum lycopersicum) in Suleymanpasa District, Tekirdag of Turkey. Pure and Applied Biology, 9(3), 1920-1931.
[32] Bellitürk, K., Aslam, Z., Ahmad, A., & Rehman, S. U. (2020). Alteration of physical and chemical properties of livestock ma-nures by Eisenia fetida (Savigny, 1926) and developing valuable organic fertilizer. Journal of Innovative Sciences, 6(1), 47-53.
[33] Rostami, R., Nabaei, A., & Eslami, A. (2009). Survey of optimal temperature and moisture for worm’s growth and operating vermicompost production of food wastes. Journal of Environmental Health, 1(2), 105-112.
[34] Kumar, A., Prakash, C. H. B., Brar, N. S., & Kumar, B. (2018). Potential of vermicompost for sustainable crop production and soil health improvement in different cropping systems. International Journal of Current Microbiology and Applied Sciences, 7(10), 1042-1055.
[35] Aslam, Z., Ahmad, A., Idrees, M., Iqbal, N., Akbar, G., Ali, U., Ibrahim, M. U., Bellitürk, K., Naeem, S., Nawaz, M., Nadeem, M., Waqas, M., Rehman, W. U., Sajjad, M., Samiullah., & Akram, Y. (2020). Comparative analysis of nutritional sources on the morpho-physiological characteristics of mung bean (Vigna radiata). International Journal of Agriculture and Food Science, 4(3), 314-322.
[36] Sami, U. R., Aslam, Z., Bellitürk, K., Ahmad, A., Nadeem, M., & Waqas, M. (2020). Vermicomposting in Pakistan: Current Scenario and Future Prospectives. Modern Concepts and Developments in Agronomy, 6(1), 617-619.
[37] Ahmad, A., Aslam, Z., Iqbal, N., Idrees, M., Bellitürk, K., Rehman, S. U., Ameer, H., Ibrahim, M. U., Samiullah, & Rehan, M. (2019). Effect of exogenous application of osmolytes on growth and yield of wheat under drought conditions. Journal of Envi-ronmental and Agricultural Sciences, 21, 6-13.
[38] Reddy, R., Reddy, M., Reddy, Y. T. N., Reddy, N.S., Anjanappa, N., & Reddy, R. (1998). Effect of organic and inorganic sources of NPK on growth and yield of pea (Pisum sativum L.). Legume Research, 21(1), 57-60.
[39] Nagavallemma, K., Wani, S., Stephane, L., Padmaja, V., Vineela, C., Babu, R. M., & Sahrawat, K. (2004). Vermicomposting: recycling wastes into valuable organic fertilizer. Journal of SAT Agricultural Research, 2, 1-16.
[40] Angadi, V. V., & Radder, G. D. (1996). In: Organic Farming and Sustainable Agriculture. National Seminar, G.B.P.U.A.T, Pantnagar. 34.
[41] Liu, M., Hu, F., Chen, X., Huang, Q., Jiao, J., Zhang, B., & Li, H. (2009). Organic amendments with reduced chemical fertilizer promotes soil microbial development and nutrient availability in a subtropical paddy field: the influence of quantity, type and application time of organic amendments. Applied Soil Ecology, 42, 166-175.
[42] Satyanarayana, V., Murthy, V. R. K., Vara Prasad P. V., & Boote, K. J. (2002). Influence of integrated use of farmyard manure and inorganic fertilizers on yield and yield components of irrigated lowland rice. Journal of Plant Nutrition, 25(10), 2081-2090.
[43] Gill, J. S., & Walia, S. S. (2014). Influence of FYM, brown manuring and nitrogen levels on direct seeded and transplanted rice (Oryza sativa L.) A review. Research Journal of Agricultural and Environmental Sciences, 3(9), 417-426.
[44] Ramasamy, P. K., & Suresh, S. N. (2011). Effect of vermicompost on root numbers and length of sunflower plant (Helianthus annuus L.). Journal of Pure and Applied Microbiology, 4(1), 297-302.
[45] Hatti, S. S., Londonkar, R. L., Patil, S. B., Gangawane, A. K., & Patil, C. S. (2010). Effect of Eisenia fetida vermiwash on the growth of plants. Crop Science, 1(1), 6-10.
[46] Rekha, G. S., Valivittan, K., & Kaleena, P. K. (2013). Studies on the influence of vermicompost and vermiwash on the growth and productivity of black gram (Vigna mungo). Advance in Biological Regulation, 7(4), 114-121.
[47] Atiyeh, R. M., Arancon, N., Edwards, C. A., & Metzger, J. D. (2002). The influence of earthworm-processed pig manure on the growth and productivity of marigolds. Bioresource Technology, 81, 103-108.
[48] Singh, M., & Wasnik, K. (2013). Effect of vermicompost and chemical fertilizer on growth, herb, oil yield, nutrient uptake, soil fertility, and oil quality of rosemary. Communications in Soil Science Plant Analysis, 44(18), 2691-2700.
[49] Atiyeh, R. M., Dominguez, J., Subler, S., Edwards, C. A. (2000). Changes in biochemical properties of cow manure during processing by earthworms (Eisenia andrei, Bouché) and the effects on seedling growth. Pedobiologia, 44, 709-724.
[50] Edwards, C. A., Dominguez, J., & Arancon, N. Q. (2004). The influence of vermicomposts on plant growth and pest incidence. In: Soil Zoology for Sustainable Development in the 21st Century (Shakir, S. H., Mikhaïl, W. Z. A., Eds.), Cairo, pp. 397-420.
[51] Lazcano, C., Arnold, J., Tato, A., Zaller, J. G., & Domínguez, J. (2009). Compost and vermicompost as nursery pot components: Effects on tomato plant growth and morphology. Span. Journal of Agricultural Research, 7, 944-951.
[52] Arancon, N. Q., Edwards, C. A., Babenko, A., Cannon, J., Galvis, P., & Metzger, J. D. (2008). Influences of vermicomposts, produced by earthworms and microorganisms from cattle manure, food waste and paper waste, on the germination, growth and flowering of petunias in the greenhouse. Applied Soil Ecology, 39, 91-99.
[53] Arancon, N. Q., Edwards, C. A., Bierman, P., Welch, C., & Metzger, J. D. (2004). The influence of vermicompost applications to strawberries: Part I. Effects on growth and yield. Bioresource Technology, 93, 145-153.
[54] Arancon, N. Q., Edwards, C. A., & Atiyeh, R. (2004). Effects of vermicomposts produced from food waste on the growth and yields of greenhouse peppers. Bioresource Technology, 93, 139-144.
[55] Atiyeh, R. M., Dominguez, J., Subler, S., & Edwards, C. A. (2000). Changes in biochemical properties of cow manure during processing by earthworms (Eisenia andrei, Bouché) and the effects on seedling growth. Pedobiologia, 44, 709-724.
[56] Singh, R., Sharma, R. R., Kumar, S., Gupta, R. K., & Patil, R. (2008). Vermicompost substitution influences growth, physio-logical disorders, fruit yield and quality of strawberry (Fragaria xananassa Duch.). Bioresource Technology, 99, 8507-8511.
[57] Gutierrez-Miceli, F. A., Santiago-Borraz, J., Molina, J. A. M., Nafate, C. C., Abud-Archila, M., Llaven, M. A. O., Rin-con-Rosales, R., & Dendooven, L. (2007). Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (Lycopersicum esculentum). Bioresource Technology, 98(15), 2781-2786.
[58] Suhane, R. K. (2007). Vermicompost. Rajendra Agriculture University, Pusa, pp. 88.
[59] Tomati, U., & Galli, E. (1995). Earthworms, soil fertility and plant productivity. Acta Zoologica Fennica, 196, 11-14.
[60] Grapelli, A., Tomati, U., Galli, E., & Vergari, B. (1985). Earthworm casting in plant propagation. Horticultural Science, 20, 874-876.
[61] Federico, J. S., Borraz, J.A., Molina, M., Nafate, C., Archila, C., & Oliva, L. M. (2007). Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (Lycopersicum esculentum). Bioresource Technology, 98(15), 2781-2786.
[62] Kale, R. D. & Bano, K. (1986). In: Proceedings Nat. Semi on Organic waste Utilization. pp. 151-160.
[63] Jadhav, A. D. (1997). J. Maharashtra agriculture University, 22, 249-250.
[64] Nagarajan, S. (1997). Kisan World, 24(8), 49-50.
[65] Sarwar, G., Hussain, N., Schmeisky, H., & Muhammad, S. (2007). Use of compost an environment friendly technology for enhancing rice-wheat production in Pakistan. Pak. Journal of Botany, 39(5), 1553-1558.
[66] Sarwar, G., N. Hussain, H. Schmeisky, S. Muhammad, M. Ibrahim, and E. Safdar. (2008). Improvement of soil physical and chemical properties with compost application in rice-wheat cropping system. Pakistan Journal of Botany, 40, 275-282.
[67] Gopinath, K. A., Saha, S., Mina, B. L., Pande, H., Kundu, S., & Gupta, H. S. (2008). Influence of organic amendments on growth, yield and quality of wheat and on soil properties during transition to organic production. Nutrient Cycling in Agroeco-systems, 82, 51-60.
[68] Grigatti, M., Giorgonni, M., & Ciavatta, C. (2007). Compost-based growing media: influence on growth and nutrient use of bedding plants. Bioresource Technology, 98, 3526-3534.
[69] Aslam, Z., & Ahmad, A. (2020). Effects of vermicompost, vermi-tea and chemical fertilizer on morpho-physiological characte-ristics of maize (Zea mays L.) in Suleymanpasa District, Tekirdag of Turkey. Journal of Innovative Sciences, 6(1), 41-46.
[70] Lim, S. L., Wu, T. Y., Lim, P. N., & Shak, K. P. (2015). The use of vermicompost in organic farming: overview, effects on soil and economics. Journal of the Science of Food and Agriculture, 95(6), 1143-1156.
[71] Adhikary, S. (2012). Vermicompost, the story of organic gold: A review. Agricultural Sciences, 3(7), 905-917.
[72] Hendriksen. (1997). Production of earthworm Eisenia fetida has a potential economical source of protein. Biotechnology and Bioengineering, 23, 1812-1997.
[73] Jeyabal, G., & Kuppuswamy. (2001). Recycling of organic wastes for the production of vermicompost and its response in rice-legume cropping system and soil fertility. European Journal of Agronomy, 15(3), 153 170.
[74] Rose, C. J. & Wood, A. W. (1980). Some environmental factors affecting earthworm populations and sweet potato production in Tari basin, Papua New Guniea Highlands. Papua New Guinea. Journal of Agricultural Science, 31, 1-13.
[75] Arancon, N., Lee, S., Edwards, C., & Atiyeh, R. (2003). Effects of humic acids derived from cattle, food and paper-waste ver-micomposts on the growth of greenhouse plants. Pedobiologia, 47(5), 741-744.
[76] Postma, J., Montanari, M., & Vanden Boogert, P. H. J. F. (2003). Microbial enrichment to enhance disease suppressive activity of compost. European Journal of Soil Biology, 39, 157-163.
[77] Perner, H., Schwarz, D., & George, E. (2006). Effect of mycorrhizal inoculation and compost supply on growth and nutrient uptake of young leek plants growth on peat-based substrates. Horticultural Science, 41, 628-632.
[78] Lee, K. E. (1992). Some trends on opportunities in earthworm research or: Darwin’s children—the future of our discipline. Soil Biology and Biochemistry, 24, 1765-1771.
[79] Casenave, C., & Valentin. (1988). In Surface states: one of the keys to Sahelian hydrology. Proc. Sahel Forum on the state-of-the-art of hydrology and hydrogeology in the arid and semi-arid areas of Africa. (UNESCO/IWRA, Urbana, IL, USA. 61-72).
[80] Lee, K. E. (1985). Earthworms, their Ecology and Relationships with Land Use. Academic Press, Sydney, p. 411.
[81] Lee, K. E. (1992). Soil Biology and Biochemistry, 24, 1765-1771.
[82] Maheswarappa, H. P., Nanjappa, H. V., & Hegde, M. R. (1999). Influence of organic manures on yield of arrowroot, soil phy-sico-chemical and biological properties when grown as intercrop in coconut garden. Annals of Agricultural Sciences, 20, 318-323.
[83] Khang, B. T. (1994). Soil Fertility, 18, 193-199.
[84] Parmelee, R.W., & Crossley, D. A. J. (1988). Earthworm production and role in the nitrogen cycle of a no-tillage agroecosystem on the Georgia piedmont. Pedobiologia, 32, 355-366.
[85] Tiwari, K. N. (1989). Fertilizer management in cropping system for increased efficiency. Fertility News, 25(3), 3-20.
[86] Hulugalle, N. R., & Ezumah, R. G. (1991). Effects of cassava-based cropping system on physiological properties of soil and earthworm casts in a tropical Alfisol. Agriculture Ecosystems and Environment, 35, 55-63.
Vermicomposting Methods from Different Wastes: An Environment Friendly, Economically Viable and Socially Acceptable Approach for Crop Nutrition: A Review
How to cite this paper: Ali Ahmad, Zubair Aslam, Korkmaz Bellitürk, Naeem Iqbal, Shoaib Naeem, Muhammad Idrees, Zohaib Kaleem, Muhammad Yasir Nawaz, Muhammad Nawaz, Muhammad Sajjad, Wajeeh Ur Rehman, Hafiz Naveed Ramzan, Muhammad Waqas, Yousuf Akram, Muhammad Asif Jamal, Muhammad Usman Ibrahim, Hafiz Amir Tauqeer Baig, Ahmad Kamal. (2021) Vermicomposting Methods from Different Wastes: An Environment Friendly, Economically Viable and Socially Acceptable Approach for Crop Nutrition: A Review. International Journal of the Science of Food and Agriculture, 5(1), 58-68.
DOI: http://dx.doi.org/10.26855/ijfsa.2021.03.009