
TOTAL VIEWS: 351
Gravitational-wave astronomy has rapidly evolved into a transformative field, enabling direct observation of compact binary coalescences and providing unprecedented insights into the strongfield regime of general relativity. In this study, we analyze three confirmed events—GW170817, GW150914, and GW230627—using publicly available data from the LIGO Open Science Center. Through systematic signal processing, including whitening, bandpass filtering, and time–frequency analysis, we reproduce the characteristic “chirp” signatures of compact binaries and highlight the contrasting features of neutron star and black hole mergers. The long inspiral of GW170817 demonstrates the high-frequency evolution of binary neutron stars, while the shorter, lower-frequency chirps of GW150914 and GW230627 reflect the dynamics of more massive black hole binaries. By comparing time-domain, frequency-domain, and spectrogram representations, we confirm the astrophysical origin of these signals and their consistency with theoretical predictions. Our results underscore the accessibility of open data for scientific exploration and illustrate how even qualitative analyses can reveal the fundamental physics of compact binary systems.
Gravitational wave; Compact binaries; Strain analysis; GWOSC
[1] Newton I. Philosophiae Naturalis Principia Mathematica. 2nd ed. London: Streater; 1713.
[2] Newton I. Philosophiae Naturalis Principia Mathematica. 1st ed. London: Streater; 1687.
[3] Misner CW, Thorne KS, Wheeler JA. Gravitation. San Francisco: Freeman; 1973.
[4] Einstein A. On the electrodynamics of moving bodies. Annalen der Physik. 1905;17:891.
[5] Einstein A. On the general theory of relativity. Sitzungsberichte der Preußischen Akademie der Wissenschaften. 1915:778–799.
[6] Einstein A. On the field equations of gravitation. Sitzungsberichte der Preußischen Akademie der Wissenschaften (Math. Phys.). 1915:844.
[7] Schutz BF. Gravitational waves on the back of an envelope. Am J Phys. 1984;52:412.
[8] Einstein A. Approximative integration of the field equations of gravitation. Sitzungsberichte der Preußischen Akademie der Wis-senschaften Berlin (Math. Phys.). 1916:688.
[9] Einstein A. On gravitational waves. Sitzungsberichte der Preußischen Akademie der Wissenschaften Berlin (Math. Phys.). 1918:154.
[10] Hulse RA, Taylor JH. Discovery of a pulsar in a binary system. Astrophys J. 1975;195:L51.
[11] Kelley LZ. Pulsar Timing Arrays. arXiv preprint arXiv:2505.00797. 2025.
[12] Einstein Telescope [Internet]. Aei.mpg.de; 2015 [cited 2025]. Available from: https://www.aei.mpg.de/et
[13] Cosmic Explorer [Internet]. Einstein-Online.info; 2025 [cited 2025]. Available from: https://cosmicexplorer.org
[14] Comparison of global networks of third-generation gravitational-wave detectors. arXiv preprint arXiv:2411.05754. 2020.
[15] Abbott BP, et al. GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Phys Rev D. 2016;93:122003.
[16] Abbott BP, et al. Multi-messenger observations of a binary neutron star merger. Astrophys J. 2017;848:L12.
[17] Gravitational Wave Open Science Center (GWOSC) [Internet]. [cited 2025]. Available from: https://gwosc.org
[18] LOSC Event Tutorial [Internet]. GitHub; 2015 [cited 2025]. Available from: https://github.com/gwosctutorial/LOSCEvent_tutorial/blob/master/LOSCEvent_tutorial.ipynb
[19] LIGO Scientific Collaboration, Virgo Collaboration, KAGRA Collaboration. Open data from LIGO, Virgo, and KAGRA through the first part of the fourth observing run. arXiv preprint arXiv:2508.18079. 2023.
Gravitational Wave Analysis of Compact Binary Systems
How to cite this paper: Xiang Meng. (2025). Gravitational Wave Analysis of Compact Binary Systems. Theoretical Physics and Quantum Mechanics, 2(1), 11-21.
DOI: http://dx.doi.org/10.26855/tpqm.2025.06.003