Article http://dx.doi.org/10.26855/ijfsa.2021.09.020

Ways to Use Allelopathic Potential for Weed Management: A Review


Tanveer Abbas1, Ali Ahmad1,*, Ahmad Kamal1, Muhammad Yasir Nawaz2, Muhammad Ahsan Jamil1, Tasbiha Saeed1, Muhammad Asif Abid3, Hafiz Hussain Ali4, Muhammad Ateeq5

1Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan.

2Department of Pathology, Faculty of Veterinary Science, University of Agriculture Faisalabad, 38000, Pakistan.

3Department of Horticulture, MNS-University of Agriculture, Multan, Punjab, Pakistan.

4Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan.

5College of Agriculture, BZU, Bahadur Sub Campus, Layyah 31200, Punjab, Pakistan.

*Corresponding author: Ali Ahmad

Published: August 31,2021


A large number of plant and weed species produce secondary metabolites known as allelochemicals, and the process is known as allelopathy. Allelochemicals can be used to control weeds in agricultural systems by using allelopathic crops for intercropping, crop rotation, or mulching. A few important examples of crop species with high allelopathic potential may include (but not limited to) wheat, rice, sorghum, rye, barley, and sunflower. The naturally produced allelochemicals in these crops could be manipulated to suppress weeds and witness an environment-friendly and sustainable agricultural production system. The objective of this article is to review the opportunities for using allelopathy to enhance overall potentiality of weeds and crops in natural weed management. Allelopathy is the beneficial or adverse effect of one plant on another due to direct or indirect release of chemicals from live or dead plants (including microorganisms). Although we cannot discard use of synthetic herbicides completely at the present situation but their use can be reduced up to a specific extent by using allelopathic potentiality as a preferred weed management strategy for crop production as well as environmental benefits.


[1] Zimdahl, R. L. (2018). Fundamentals of weed science. Academic press.

[2] Oerke, E.-C. and H.-W. J. C. P. Dehne. (2004). Safeguarding production—losses in major crops and the role of crop protection. 2004, 23(4): pp. 275-285.

[3] Young, S. L., F. J. Pierce, and P. Nowak. (2014). Introduction: Scope of the problem—rising costs and demand for environmental safety for weed control, in Automation: The future of weed control in cropping systems. 2014, Springer. Pp. 1-8.

[4] Griepentrog, H. W. and A. P. Dedousis. (2010). Mechanical weed control, in Soil Engineering. 2010, Springer. Pp. 171-179.

[5] Bergin, D. J. N. Z. F. R. I. L. (2011). Weed control options for coastal sand dunes: a review. 2011: pp. 5-13.

[6] Rueda‐Ayala, V., et al. (2011). The influence of post‐emergence weed harrowing on selectivity, crop recovery and crop yield in different growth stages of winter wheat. 2011. 51(5): pp. 478-488.

[7] Chauvel, B., et al. (2012). History of chemical weeding from 1944 to 2011 in France: Changes and evolution of herbicide molecules. 2012. 42: pp. 320-326.

[8] Carvalledo, J., et al. (2013). Field sprayer for inter- and intra-row weed control: performance and labor savings. 

[9] Gianessi, L. P. J. P. m. s. (2013). The increasing importance of herbicides in worldwide crop production. 2013. 69(10): pp. 1099-1105.

[10] Smith, R. G., et al. (2011). Direct and indirect impacts of weed management practices on soil quality. 2011 (soil management b): pp. 275-286.

[11] Bond, W. and A. J. W. r. Grundy. (2001). Non‐chemical weed management in organic farming systems. 2001. 41(5): pp. 383-405.

[12] Annett, R., H. R. Habibi, and A. J. J. o. A. T. Hontela. (2014). Impact of glyphosate and glyphosate‐based herbicides on the freshwater environment. 2014. 34(5): pp. 458-479.

[13] Hoppin, J. A. (2014). Pesticides and respiratory health: where do we go from here? 2014, BMJ Publishing Group Ltd.

[14] Jabran, K. and M. Farooq. (2013). Implications of potential allelopathic crops in agricultural systems, in Allelopathy. 2013, Springer. Pp. 349-385.

[15] Pickett, J. A., et al. (2014). Delivering sustainable crop protection systems via the seed: exploiting natural constitutive and inducible defence pathways. 2014. 369(1639): pp. 20120281.

[16] Rizvi, S., et al. (1992). A discipline called allelopathy, in Allelopathy. 1992, Springer. Pp. 1-10.

[17] Harper, J. R. and N. E. J. P. P. Balke. (1981). Characterization of the inhibition of K+ absorption in oat roots by salicylic acid. 1981. 68(6): pp. 1349-1353.

[18] Einhellig, F. A. and J. A. J. J. o. C. E. Rasmussen. (1979). Effects of three phenolic acids on chlorophyll content and growth of soybean and grain sorghum seedlings. 1979. 5(5): pp. 815-824.

[19] Rice, E. L. (2012). Allelopathy. 2012.

[20] Sadeghi, S., et al. (2010). Allelopathie effect of Helianthus annuus on Solanum nigrum seed germination and growth in laboratory condition. 2010. 2(1): pp. 32-37.

[21] Jafariehyazdi, E., F. J. P. Javidfar. (2011). Soil, and Environment, Comparison of allelopathic effects of some brassica species in two growth stages on germination and growth of sunflower. 2011. 57(2): pp. 52-56.

[22] Schulz, M., et al. (2013). Benzoxazinoids in rye allelopathy-from discovery to application in sustainable weed control and organic farming. 2013. 39(2): pp. 154-174.

[23] Bertholdsson, N. O., S. C. Andersson, and A. J. P. B. Merker. (2012). Allelopathic potential of Triticum spp., Secale spp. and Triticosecale spp. and use of chromosome substitutions and translocations to improve weed suppression ability in winter wheat. 2012. 131(1): pp. 75-80.

[24] Didon, U. M., et al. (2014). Cover crop residues—effects on germination and early growth of annual weeds. 2014. 62(2): pp. 294-302.

[25] Macías, F. A., et al. (2014). Evidence for an allelopathic interaction between rye and wild oats. 2014. 62(39): pp. 9450-9457.

[26] Weston, L. A., I. S. Alsaadawi, and S. R. J. J. o. C. E. Baerson. (2013). Sorghum allelopathy—from ecosystem to molecule. 2013. 39(2): pp. 142-153.

[27] Weston, L. A., P. R. Ryan, and M. J. J. o. e. b. Watt. (2012). Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. 2012. 63(9): pp. 3445-3454.

[28] Haramoto, E. R., E. R. J. R. a. Gallandt, and f. systems. (2004). Brassica cover cropping for weed management: a review. 2004. 19(4): pp. 187-198.

[29] Fahey, J. W., A. T. Zalcmann, and P. J. P. Talalay. (2001). The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. 2001. 56(1): pp. 5-51.

[30] Weston, L. A. and S. O. J. C. r. i. p. s. Duke. (2003). Weed and crop allelopathy. 2003. 22(3-4): pp. 367-389.

[31] Bangarwa, S. K. and J. K. J. J. o. C. I. Norsworthy. (2014). Brassicaceae cover-crop effects on weed management in plasticulture tomato. 2014. 28(2): pp. 145-158.

[32] Narwal, S. and R. Haouala. (2013). Role of allelopathy in weed management for sustainable agriculture, in Allelopathy. 2013, Springer. Pp. 217-249.

[33] Alsaadawi, I. S., et al. (2013). Differential allelopathic potential of sunflower (Helianthus annuus L.) genotypes on weeds and wheat (Triticum aestivum L.) crop. 2012. 58(10): pp. 1139-1148.

[34] Jabran, K., et al. (2015). Allelopathy for weed control in agricultural systems. 2015. 72: pp. 57-65.

[35] Khan, M. B., et al. (2012). Bio-economic assessment of different wheat-canola intercropping systems. 2012. 14(5).

[36] Jabran, K. and B. Chauhan. (2018). Non-chemical weed control. 2018: Academic Press.

[37] Farooq, M., et al. (2011). The role of allelopathy in agricultural pest management. 2011. 67(5): pp. 493-506.

[38] Khan, Z. R., et al. (2002). Control of witchweed Striga hermonthica by intercropping with Desmodium spp., and the mechanism defined as allelopathic. 2002. 28(9): pp. 1871-1885.

[39] Nawaz, A., et al. (2014). Role of allelopathy in weed management, in Recent advances in weed management. 2014, Springer. Pp. 39-61.

[40] Abraham, C. and S. J. T. J. o. A. S. Singh. (1984). Weed management in sorghum-legume intercropping systems. 1984. 103(1): Pp. 103-115.

[41] Naeem, M. (2011). Studying weed dynamics in wheat (Triticum aestivum L.)-canola (Brassica napus L.) intercropping system. 2011, M. Sc. thesis, Department of Agronomy, University of Agriculture, Faisalabad.

[42] Banik, P., et al. (2006). Wheat and chickpea intercropping systems in an additive series experiment: advantages and weed smothering. 2006. 24(4): pp. 325-332.

[43] Tursun, N., et al. (2018). Use of living, mowed, and soil-incorporated cover crops for weed control in apricot orchards. 2018. 8(8): p. 150.

[44] Bhowmik, P. C. J. C. p. (2003). Challenges and opportunities in implementing allelopathy for natural weed management. 2003. 22(4): pp. 661-671.

[45] Einhellig, F. A. and G. R. J. J. o. C. E. Leather. (1988). Potentials for exploiting allelopathy to enhance crop production. 1988. 14(10): pp. 1829-1844.

[46] Mwaja, V. N., J. B. Masiunas, and L. A. J. J. o. c. e. Weston. (1995). Effects of fertility on biomass, phytotoxicity, and allelochemical content of cereal rye. 1995. 21(1): pp. 81-96.

[47] Cheema, Z. A., M. Farooq, and A. Khaliq. (2013). Application of allelopathy in crop production: success story from Pakistan, in Allelopathy. 2013, Springer. Pp. 113-143.

[48] Teasdale, J. R., et al. (2004). Weed seed bank dynamics in three organic farming crop rotations. 2004. 96(5): pp. 1429-1435.

[49] Liebman, M. and E. J. E. a. Dyck. (1993). Crop rotation and intercropping strategies for weed management. 1993. 3(1): pp. 92-122.

[50] Mamolos, A. and K. J. J. o. c. p. Kalburtji. (2001). Significance of allelopathy in crop rotation. 2001. 4(2): pp. 197-218.

[51] Einhellig, F. A. and J. A. J. J. o. C. E. Rasmussen. (1989). Prior cropping with grain sorghum inhibits weeds. 1989. 15(3): pp. 951-960.

[52] Roth, C. M., J. P. Shroyer, and G. M. J. A. J. Paulsen. (2000). Allelopathy of sorghum on wheat under several tillage systems. 2000. 92(5): pp. 855-860.

[53] Conklin, A. E., et al. (2002). Effects of red clover (Trifolium pratense) green manure and compost soil amendments on wild mustard (Brassica kaber) growth and incidence of disease. 2002. 238(2): pp. 245-256.

[54] Abbas, T., et al. (2016). Mulching with allelopathic crops to manage herbicide resistant little seed canarygrass. 2016. 16(1).

[55] Bilalis, D., et al. (2003). Effect of different levels of wheat straw soil surface coverage on weed flora in Vicia faba crops. 2003. 189(4): pp. 233-241.

[56] Jabran, K. and B. S. Chauhan. (2018). Overview and significance of non-chemical weed control, in Non-Chemical Weed Control. 2018, Elsevier. Pp. 1-8.

[57] Jabran, K. and B. S. Chauhan. (2018). Weed control using ground cover systems, in Non-Chemical Weed Control. 2018, Elsevier. Pp. 61-71.

[58] Jabran, K., et al. (2015). Mulching improves crop growth, grain length, head rice and milling recovery of basmati rice grown in water-saving production systems. 2015. 17(5).

[59] Jabran, K., et al. (2015). Mulching improves water productivity, yield and quality of fine rice under water‐saving rice production systems. 2015. 201(5): pp. 389-400.

[60] Younis, A., et al. (2012). Effect of different types of mulching on growth and flowering of Freesia alba cv.'Aurora'. 2012. 49(4): pp. 429-433.

[61] Cheema, Z., A. Khaliq, and S. J. J. o. S. A. Saeed. (2004). Weed control in maize (Zea mays L.) through sorghum allelopathy. 2004. 23(4): pp. 73-86.

[62] Riaz, M. J. M. T. (2010). Department of Agronomy, University of Agriculture, Faisalabad, Pakistan, Non-chemical weed management strategies in dry direct seeded fine grain aerobic rice (Oryza sativa L.). 2010.

[63] Mahmood, A. and Z. J. I. J. A. B. Cheema. (2004). Influence of sorghum mulch on purple nutsedge (Cyperus rotundus L.). 2004. 6(1): pp. 86-88.

[64] Bajgai, Y., et al. (2015). Comparison of organic and conventional managements on yields, nutrients and weeds in a corn-cabbage rotation. 2015. 30(2): pp. 132-142.

[65] Rawat, L. S., et al. (2017). Sunflower allelopathy for weed control in agriculture systems. 2017. 20(1): pp. 45-60.

[66] Dhima, K., et al. (2006). Allelopathic potential of winter cereals and their cover crop mulch effect on grass weed suppression and corn development. 2006. 46(1): pp. 345-352.

[67] Khaliq, A., et al. (2011). Effect of crop residues applied isolated or in combination on the germination and seedling growth of horse purslane (Trianthema portulacastrum). 2011. 29: pp. 121-128.

[68] Jabran, K. (2017). Manipulation of allelopathic crops for weed control. 2017: Springer.

[69] Jamil, M. A., et al. (2021). Role of Allelopathy for Suppression of Parthenium hysterophorus: A Review. 2021.

[70] Tabaglio, V., A. Marocco, and M. J. I. J. o. A. Schulz. (2013). Allelopathic cover crop of rye for integrated weed control in sustainable agroecosystems. 2013. 8(1): pp. e5-e5.

[71] Ali, M. F., et al. (2021). Bio-Medical Importance of Agronomic Weeds: An Overview. 2021. 8(1): pp. 1-8.

How to cite this paper

Ways to Use Allelopathic Potential for Weed Management: A Review

How to cite this paper: Tanveer Abbas, Ali Ahmad, Ahmad Kamal, Muhammad Yasir Nawaz, Muhammad Ahsan Jamil, Tasbiha Saeed, Muhammad Asif Abid, Hafiz Hussain Ali, Muhammad Ateeq. (2021) Ways to Use Allelopathic Potential for Weed Management: A Review. International Journal of Food Science and Agriculture5(3), 492-498.

DOI: http://dx.doi.org/10.26855/ijfsa.2021.09.020