Article http://dx.doi.org/10.26855/jamc.2021.12.010

Partial Differential Equations of A Virus Dynamical Model


Urbain Traoré

Laboratory of Mathematics and Informatique (LAMI), Joseph KI-ZERBO University, Ouagadougou, Burkina Faso.

*Corresponding author: Urbain Traoré

Published: December 13,2021


In this work, we investiguate a reaction-diffusion model with homogeneous Neumann boundary conditions of virus transmission. The model that we study in work is a generalization of the model developed by Zhang, et al.; in other words, we are trying to understand the influence of diffusion on virus dynamics. We prove global existence, uniqueness, positivity and boundness of the solution using a variational theory and some other useful tools from functional analysis. From the characteristic equation, we derive the local stability of the equilibriums. Moreover, the global asymptotical properties of the free-virus equilibrium and the endemic equilibruims of the model are studied by constructsing of a suitable Lyapunov functions. Finally, numerical simulations are performed to support the theoretical results obtained. Our numerical results indicate that the introduction of the diffusion in the model does not suppressthe dynamics of the virus, one obtains globally the configurations that in the absence of thediffusion. However, the mathematical analysis becomes more complicated.


[1] Pasteur, L., Chamberland, C., and Roux, E. (1884).  Physiologie exprimentale: nouvelle communication sur la rage (Experimental physiology: new communication on rabies).  C. R. Acad. Sci. , 98, 457-463. 

[2] Chi, N. C., Vales, E., and Almeida, G. G. (2012).  Analysis of a HBV model with diffusion and time delay.  J. Appl.  Math.  Article ID 578561. 

[3] Eikenberry, S., Hews, S., Nagy, J. D., and Kuang, Y. (2009).  The dynamics of a delay model of hepatitis B virus infection with logistic hepatocyte growth.  Math.  Biosci.  Eng. , Vol. 6, No. 2, pp. 283-299. 

[4] Hattaf, K. and Yousfi.  (2013).  Global stability for reaction-diffusion equations Comput.  Math.  Appl.  Vol. 66, No. 8, pp. 1488-1497. 

[5] Wang, J., Tian, X. (2013).  Global stability of a delay differential equation of hepatitis B virus infection with immune response, Electron.  J. Differ.  Equ. , Vol. 94, pp. 1-11. 

[6] Zhang, Y., Xu, Z. (2014).  Dynamics of a diffusive HBV model with delayed Beddington-DeAngelis response, Nonlinear Anal.  Real World Appl. , Vol. 15, 118-139. 

[7] Perelson, A. S., Nelson, P. W. (1999).  Mathematical analysis of HIV-1 dynamics in vivo.  SIAM Rev., Vol. 41, No. 1, 3-44. 

[8] Perelson, A. S., Neumann, A. U., Markowitz, M., Leonard, J. M., and Ho, D. D. (1996).  HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time.  Science, Vol. 271, No. 5255, 1582-1586.4. 

[9] Nelson, P. W. and Perelson, A. S. (2002).  Mathematical analysis of delay differential equation models of HIV-1 infection.  Math.  Biosci. , Vol. 179, No. 1, 73-94. 

[10] Spouge, J. L., Shrager, R. I., and Dimitrov, D. S. (1996).  HIV-1 infection kinetics in tissue cultures, Math.  Biosci. , Vol. 138 No. 1, 1-22.  https //:doi:org=10.1016/S0025-5564(96)00064- 8. 

[11] Zhang, T., Meng, X., Zhang, T. (2015).  Global dynamics of a virus dynamical model with cell-to-cell transmision and cure rate.  Comput.  Math.  Methods Med. Article ID 758362. 

[12] Zhang, T., Wang, J., Yuqing Li. , Jiang, Z., and Han, X. (2020).  Dynamics analysis of a delayed virus model with two different transmission methods and treatments.  Adv. Differ.  Equ. , Vol. 2020, No 1, https://doi.org/10.1186/s13662-019-2438-0. 

[13] Funk, G. A., Jansen, V. A. A., Bonhoeffer, S., and Killingback, T. (2005).  Spatial models of virus-immune dynamics.  J. Theor.  Biol. , Vol. 233, No. 2, 221-236. 

[14] Manna, K. (2017).  Global properties of a HBV infection model with HBV DNA-containing capsids and CTL immune response.  Int.  J. Appl.  Comput.  Math. , Vol. 3, No. 3, 2323-2338. 

[15] Pazy, A. (1983).  Semigroups of Linear Operators and Applications to Partial Differential Equations.  Vol. 44 of Applied Mathematical Sciences, Springer, New York, NY, USA. 

[16] Protter, M. H. and Weinberger, H. F. (1967).  Maximum Principles in Differential Equations.  Prentice Hall, Englewood Cliffs. 

[17] Alikakos, N. D. (1979).  An application of the invariance principle to reaction-diffusion equations.  Journal of Differential Equations.  Vol. 33, No. 2, 201-225. 

[18] Henry, D. (1993).  Geometric Theory of Semilinear Parabolic Equations.  Vol. 840 of Lecture Notes in Mathematics, Springer, Berlin, Germany. 

[19] Diekmann, O., Heesterbeek, J. A. P., and Metz, J. A. (1990).  On the definition and the computation of the basic reproduction ratio R_0 in models for infectious diseases in heterogeneous populations.  Journal of Mathematical Biology, vol. 28, No. 4, 365-382. 

[20] Van den Driessche, P. and Watmough, J. (2002).  Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission.  Mathematical Biosciences, vol. 180, No. 1, 29-48. 

[21] Routh, E. J., Clifford, W. K., Sturm, C., and Bocher, M. (1975).  Stability of Motion.  Taylor & Francis, London, UK. 

[22] La Salle, J. P. (1976).  The Stability of Dynamica Systems.  SIAM Publications, Philadelphia, Pa, USA.

How to cite this paper

Partial Differential Equations of A Virus Dynamical Model

How to cite this paper: Urbain Traoré. (2021) Partial Differential Equations of A Virus Dynamical ModelJournal of Applied Mathematics and Computation5(4), 321-330.

DOI: http://dx.doi.org/10.26855/jamc.2021.12.010