Article http://dx.doi.org/10.26855/ijfsa.2021.12.021

Tillage and Rotation effects on Bromus diandrus Roth: A Lesson Learned from Fields in Northern Spain


M. I. Santín-Montanyá1,*, A. Sombrero-Sacristán2

1Environment and Agronomy Department, National Institute for Agricultural and Food Research and Technology (INIA-CSIC), Madrid, Spain.

2Agrarian and Technological Institute of Castile and Leon (ITACyL), Valladolid, Spain.

*Corresponding author: M. I. Santín-Montanyá

Published: December 15,2021


The aim of this research was to achieve a good understanding of the practices and environment conditions to control Bromus diandrus Roth, in the semi-arid drylands of northern Spain. We studied the effects of three crop systems: monoculture, cereal/fallow and cereal/legume on the density and biomass of B. diandrus over three seasons, under three soil tillage managements: conventional tillage (CT), minimum tillage (MT) and no-tillage (NT), at tillering and booting stages of cereal crops. The results showed B. diandrus significantly increased with cereal monoculture under conservation systems. Overall, NT presented highest infestation levels that increase from 89 plants m-2 to 342 plants m-2 between the first and the third experimental seasons. Followed by MT, that increased from 136 to 231 plants m-2. Infestation levels in CT resulted lowest, with no weed plants in the first two seasons and only 5 plants m-2 in the third season. In conservation systems, yield was consistently lower under cereal monoculture because of B. diandrus competition. The introduction of legume crops in rotations decreased B. diandrus infestation and had a positive effect on cereal production. The inclusion of fallow in a cereal rotation scheme can be a good alternative if legume crops are not available.


[1] Kassam, A., T. Friedrich, F. Shaxson, and Pretty, J. (2009). The spread of conservation agriculture: Justification, sustainability and uptake. International Journal of Agricultural Sustainability, 7, 292-20. doi:10.3763/ijas.2009.0477.

[2] Zuazo, V. H. D., Pleguezuelo, C. R. R., Panadero, L. A., Raya, A. M., Martínez, J. R. F., and Rodríguez, B. C. (2009). Soil conservation measures in rainfed olive orchards in south-eastern Spain: Impacts of plant strips on soil water dynamics. Pedosphere, 19, 453-64.

[3] Ramos, M. E., Benítez, E., García, P. A., and Robles, A. B. (2010). Cover crops under different managements vs. frequent tillage in almond orchards in semiarid conditions: Effects on soil quality. Applied Soil Ecology, 44, 6-14. doi: 10.1016/j.apsoil.2009.08.005

[4] Qamar, R., Ehsanullah, A., Rehman, A. A., A. Ghaffar, A., Mahmood, H. M. R., and Javeed, M. A. (2013). Growth and economic assessment of wheat under tillage and nitrogen levels in rice-wheat system. American Journal of Plant Sciences, 4, 2083-91. doi:10.4236/ajps.2013.411260.

[5] Rydahl, P. (2004). A Danish decision support system for integrated management of weeds. Aspects of Applied Biology 72, Advances in Applied Biology: Providing New Opportunities for Consumers and Producers in the 21st Century, 43-53.

[6] Young, F. L. and Thorne, M. E. (2004). Weed-species dynamics and management in no-till and reduced-till fallow cropping systems for the semi-arid agricultural region of the Pacific Norwesth, USA. Crop Protection, 23, 1097-1110.

[7] Kleemann, S. G. L. and Gill, G. S. (2009). Population ecology and management of rigid brome (Bromus rigidus) in Australian cropping systems. Weed Science, 57, 202-207.

[8] Anderson, R. L., Tanaka, D. L., Black, A. L., and Schweizer, E. E. (1998). Weed community and species response to crop rotation, tillage, and nitrogen fertility. Weed Technology, 12, 531-536.

[9] Anderson, R. L. (2003). An ecological approach to strengthen weed management in the semiarid Great Plains. Advances in Agronomy, 80, 33-62.

[10] Anderson, R. L. (2005). A multi-tactic approach to manage weed population dynamics in crop rotations. Agronomy Journal, 97, 1579-1583.

[11] Papendick, R. I. (2004). Farming with the Wind II, Wind Erosion and Air Quality Control on the Columbia Plateau and Columbia Basin. Washington State University College Agriculture and Home Economics Report No. XB1042, Pullman, WA.

[12] Young, F. L., Bewick, L. S., and Pan, W. L. (2008). Systems approach to crop rotation research: guidelines and challenges. In: Crop Rotations, Berklian, Y. U., Ed., Nova Science Publishers, Inc., New York, 41-69.

[13] Swanton, C. J., Shrestha, A., Knezevic, S. Z., Roy, R. C., and Ball-Coelho, B. R. (2000). Influence of tillage type on vertical weed seedbank distribution in a sandy soil. Canadian Journal of Plant Science, 80, 455-457.

[14] Torrensen, K. S., Skuterud, R., Tandsaether, H. J., and Hagemo, M. B. (2007). Long-term experiments with reduced tillage in spring cereals. I. Effects on weed flora, weed seedbank and grain yield. Crop Protection, 22, 185-200.

[15] Légère, A., Stevenson, F. C., and Benoit, D. L. (2013). The Selective Memory of Weed Seedbanks after 18 Years of Conservation Tillage. Weed Science, 59, 98-106. DOI: 10.1614/WS-D-10-00092.1.

[16] Ozpinar, S. (2006). Effects of tillage systems on weed population and Economic for winter wheat production under the Mediterranean dryland conditions. Soil and Tillage Research, 87, 1-8. doi: 10.1016/j.still.2005.02.024.

[17] Santín-Montanyá, M. I., Fernández-Getino, A. P., Zambrana, E., and Tenorio, J. L. (2017). Effects of tillage on winter wheat production in Mediterranean dryland fields. Arid Land Research and Management, 31, 3, 269-282. DOI: 10.1080/15324982.2017.1307289.

[18] Gonzalez-Andujar, J. L., and Saavedra, M. (2003). Spatial distribution of annual grass weed populations in winter cereals. CropProtection, 22, 629-633.

[19] Arrúe, J. L., Cantero-Martínez, C., López, M. V., Moreno, F., Murillo, J. M., Pérez De Ciriza, J. J., Sombrero, A., Tenorio, J. L., and Zambrana, E. (2007). Conservation agriculture research in Spain. In: Knowledge assessment and sharing on sustainable agriculture (KASSA). Ed. Cirad. Paris.

[20] Going, B. M., Hillerislambers, J., Jonathan, M., and Levine, J. M. (2009). Abiotic and biotic resistance to grass invasion in serpentine annual plant communities. Oeoecologia, 159, 839-847. DOI 10.1007/s00442-008-1264-y.

[21] Mejri, D., Gamalero, E., Tombolini, R., Musso, C., Massa, N., Berta, G., and Souissi, T. (2010). Biological control of great brome (Bromus diandrus) in durum wheat (Triticum durum): specificity, physiological traits and impact on plant growth and root architecture of the fluorescent pseudomonad strain X33d. BioControl, 55, 561-572.

[22] Kleemann, S. G. L. and Gill, G. S. (2006). Differences in the distribution and seed germination behavior of populations of Bromus rigidus and Bromus diandrus in South Australia: Adaptations to habitat and implications for weed management. Australian Journal of Agricultural Research, 57, 2, 213-219.

[23] García, A. A. L., Torra, J., Recasens, J., Forcella, F., and Royo-Esnal, A. (2013). Hydrothermal emergence model for Bromus diandrus. Weed Science, 61, 146-153. 

[24] Del Monte, J. P., and Dorado, J. (2011). Effect of light conditions and after ripening time on seed dormancy loss of Bromus diandrus. Weed Research, 51, 581-590. DOI:10.1111/j.1365-3180.2011.00882.x.

[25] Recasens, J., García, A. L., Cantero-Martínez, C., Torra, J., and Royo-Esnal, A. (2016). Long-term effect of tillage systems on the emergence and demography of Bromus diandrus in rainfed cereal fields. Weed Research, 56, 31-40. 

[26] Dastgheib, F., Rolston, M. P., and Archie, W. J. (2003). Chemical control of brome grasses in cereals. New Zealand Plant Protection, 56, 227-232.

[27] Mokhtassi-Bidgoli, A., Mena Navarrete, L., Aghaalikhani, M., and Gonzalez-Andujar, J. L. (2013). Modelling the population dynamic and management of Bromus diandrus in a non-tillage system. Crop Protection, 43, 128-133. DOI: 10.1016/j.cropro.2012.08.015.

[28] Royo-Esnal, Recasens, J., Garrido, J., and Torra, J. (2018). Rigput brome (Bromus diandrus Roth.) management in a no tilled field in Spain. Agronomy MDPI, 8, 251. Doi. org/10.3390/agronomy8110251. 

[29] Chander, S., Ahuja, L. R., Peairs, F. B., Aggarwal, P. K., and Kalra, N. (2006). Modeling the effect of Russian wheat aphid, Diuraphisnoxia (Mordvilko) and weeds in winter wheat as guide to management. Agricultural Systems, 88, 494-513.

[30] García, A. L., Torra, J., Royo-Esnal, A., and Recasens, J. (2015). Integrated effect of crop sowing date and herbicide stress on Bromus diandrus fitness. Spanish Journal of Agricultural Research, 13, 1. http://dx.doi.org/10.5424/sjar/2015131-6574.

[31] Liebman, M. and E. Dyck. (1993). Crop rotation strategies for weed management. Ecological Applications, 3, 92-122.

[32] Moyer, J. R., Roman, E. S., Lindwall, C. W., and Blackshaw, R. E. (1994). Weed management in conservation tillage systems for wheat production in North and South America. Crop Protection, 13, 243-259.

[33] Liebman, M. and Davis, A. S. (2000). Integration of soil, crop and weed management in low-external-input farming systems. Weed Research, 40, 27-47.

[34] Mortensen, D. A., Bastiaans, L., and Sattin, M. (2000). The role of ecology in the development of weed management systems: an outlook. Weed Research, 40, 49-62.

[35] Cardina, J., Herms, C. P., and Doohan, D. J. (2002). Crop rotation and tillage system effects on weed seedbanks. Weed Science, 50, 448-460.

[36] Murphy, S. D., Clements, D. R., Belaoussoff, S., Kevan, P. G., and Swanton, C. J. (2006). Promotion of weed species diversity and reduction of weed seedbanks with conservation tillage and crop rotation. WeedScience, 54, 69-77.

[37] Riba, F. and Recasens, J. (1997). Bromus diandrus Roth en cereales de invierno (Bromus diandrus roth in winter cereals). In: La biología de las malas hierbas de España (The biology of weeds in Spain) (Sans FX and Fernández-Quintanilla C, eds). Ed. Phytoma España-Sociedad Española de Malherbología (Phytoma spain-sociedad espanola DE malherbologia). Pp: 25-35.

[38] López-Bellido, R. J., L. López-Bellido, J. Benítez-Vega, and F. J. López-Bellido. (2007). Tillage system, preceding crop, and nitrogen fertilizer in wheat crop: I. Soil water content. AgronomyJournal, 99, 59-65. doi:10.2134/agronj2006.0025.

[39] López-Bellido, R. J., L. López-Bellido, J. Benítez-Vega, and F. J. López-Bellido. (2007). Tillage system, preceding crop, and nitrogen fertilizer in wheat crop: II. Water utilization. Agronomy Journal, 99, 66-72.

[40] Bonciarelli, U., Onofri, A., Benincasa, P., Farneselli, M., Guiducci M., Pannacci, E., Tosti, G., and Tei, F. (2016). Long-term evaluation of productivity, stability for cropping systems in Mediterranean rainfed conditions. European Journal of Agronomy, 77, 146-55. doi:10.1016/j.eja.2016.02.006.

[41] Mazzoncini, M., D. Antichi, C. Di Bene, R. Risalitti, M. Petri, and E. Bonari. (2016). Soil carbon and nitrogen changes after 28 years of no-tillage management under Mediterranean conditions. European Journal of Agronomy, 77, 156-65. doi: 10.1016/j.eja.2016.02.011.

[42] Papadakis, J. (1966). Climates of the world and their agricultural potentialities. Ed. Albatros, Buenos Aires, Argentina. P. 17.

[43] Zadocks, J. C., Chang, T. T., and Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415-421.

[44] Froud-Williams, R. J. (1983). The influence of straw disposal and cultivation regime on the population dynamics of Bromus sterilis. Annals of Applied Biology, 103, 139-148.

[45] Andersson, L., Milberg, P., Schütz, W., and Steinmetz, O. (2002). Germination characteristics and emergence time of annual Bromus species of differing weediness in Sweden. Weed Research, 42, 135-147.

[46] DucroixSissons, M. J., Van Acker, R. C., Derksen, D. A., and Thomas, A. G. (2000). Depth of seedling recruitment of five weed species measured in situ in conventional- and zero- tillage fields. Weed Science, 48, 327-332.

[47] Colbach, N., Roger-Estrade, J., Chauvel, B., and Caneill, J. (2000). Modelling vertical and lateral seed bank movements during mouldboard ploughing. European Journal of Agronomy, 13, 111-124.

[48] Mohler, C. L., Frisch, J. C., and Mcculloch, C. E. (2006). Vertical movement of weed seed surrogates by tillage implements and natural processes. Soil and Tillage Research, 86, 110-122.

[49] Spokas, K., Forcella. F., Archer, D., and Reicosky, D. (2007). SeedChaser: vertical soil tillage distribution model. Computers and Electronics in Agriculture, 57, 62-73.

[50] Jensen, P. K. (2009). Longevity of seeds of four annual grass and two dicotyledon weed species as related to placement in the soil and straw disposal technique. Weed Research, 49, 592-601.

[51] Santín-Montanyá, M. I., and Sombrero Sacristán, A. (2020). The effects of soil tillage techniques on weed flora in high input barley systems in northern Spain. Canadian Journal of Plant Science, 100, 3, 245-252. DOI:10.1139/cjps-2019-0178.

[52] Gleichsner, J. A. and Appleby, A. P. (1989). Effect of depth and duration of seed burial on ripgut brome (Bromus rigidus). Weed Science, 37, 68-72.

[53] Peters, N. C. B., Atkins, H., and Brain P. (2000). Evidence of differences in seed dormancy among populations of Bromus sterilis. Weed Research, 40, 467-478.

[54] García, A. L., Royo-Esnal, A., Torra, J., Cantero-Martínez, C., and Recasens, J. (2014). Integrated management of Bromus diandrus in dryland cereal fields under no-till. Weed Research, 54, 408-417. http://dx.doi.org/10.1111/wre.12088.

[55] Dorado, J. and López-Fando, C. (2006). The effect of tillage system and use of paraplow on weed flora in a semiarid soil from central Spain. Weed Research, 46, 424-431.

[56] Grundy, A. C. (2003). Predicting weed emergence: a review of approaches and future challenges. Weed Research, 43, 1-11.

[57] Thorne, M. E., Young, F. L., and Yenish, J. P. (2007). Cropping systems alter weed seed banks in Pacific Northwest semi-arid wheat region. Crop Protection, 26, 1121-1134.

How to cite this paper

Tillage and Rotation effects on Bromus diandrus Roth: A Lesson Learned from Fields in Northern Spain

How to cite this paper: M. I. Santín-Montanyá, A. Sombrero-Sacristán. (2021) Tillage and Rotation effects on Bromus diandrus Roth: A Lesson Learned from Fields in Northern Spain. International Journal of Food Science and Agriculture5(4), 728-736.

DOI: http://dx.doi.org/10.26855/ijfsa.2021.12.021