Article http://dx.doi.org/10.26855/ea.2021.12.005

Modeling and Design of a Prototype Footstep Power Generating Machine


Israel Enema Ohiemi1, Nnorum Choice Obundah1, Ugwuoke Cornelius Chinoso1, Israel Ojo Enock2,*, Kolo Yetu Babazhitsu2, Ayuba Elkanah Jatau3, Elvis Adam Alhassan4

1Department of Mechanical Engineering, University of Nigeria, Nsukka, Nigeria.

2Department of Mechanical Engineering, Federal Polytechnic Bida, Bida, Niger State, Nigeria.

3Department of Mechanical Engineering, Technology, Niger State Polytechnic, Zungeru, Niger State, Nigeria.

4Faculty of Mathematical Sciences, C.K. Tedam University of Technology and Applied Sciences, Navrongo, Upper East Region, Ghana.

*Corresponding author: Israel Ojo Enock

Published: December 30,2021


This paper presents a non-conventional method of electrical power generation through the design, modelling and fabrication of a footstep power generating system. It is configured to generate electricity as long as there is a foot force on it.  The system consists mainly of a connecting rod, gears, u-shaped shaft, and an alternator. The component members were designed, while static and fatigue analyses were carried out using Autodesk Inventor software. The static and fatigue analysis of both spring and footboard revealed yield strength of 207 Gpa and a factor of safety of 12 for spring and 6.58 for footboard. Basic manufacturing processes were employed during the construction of the machine. The results show an output power of 0.912W, voltage of 1.52V, and an efficiency of 21% when an average mass of 62kg acted on it. The root mean square value greater than 0.9 shows a strong correlation of the predictive model.


[1] O. A. Olugboji, I. Ohiemi, and C. Ajani. (2015). “Modelling and Design of an Auto Street Light Generation Speed Breaker Mechanism,” no. January, 2015, doi: 10.12691/ajme-3-3-3.

[2] S. Afzal. (2010). “Power generation,” Filtr. Sep., vol. 47, no. 6, p. 1, 2010, doi: 10.1016/S0015-1882(10)70267-6.

[3] “Electrical energy,” Nature, vol. 178, no. 4543. p. 1151, 1956, doi: 10.1038/1781151a0.

[4] J. Tour, K. Ashley. (2011). “construction of electric power generation using reverse electowetting,” 2011.

[5] K. Shiraishi, R. G. Shirley, and D. M. Kammen. (2018). “Geospatial multi-criteria analysis for identifying high priority clean energy investment opportunities: A case study on land-use conflict in Bangladesh,” Appl. Energy, vol. 235, no. August 2018, pp. 1457-1467, 2019, doi: 10.1016/j.apenergy.2018.10.123.

[6] O. A. Olugboji and C. Ajani. (2019). “Development of a speed breaker mechanism for generating,” no. February, 2019.

[7] S. p. Kari, M., Ahsan, K., Shag, H., Kibul, H. (2016). “Electrical power generation through speed breaker,” 9th Int. Conf. Electron. Comput. Eng., 2016.

[8] M. Brooke. (2009). “The weight of the world,” Sight and Sound, 2009. 

[9] M. Design, Khurmi, R. S., and J. K. Gupta. (2019). A textbook of machine design. S. Chand publishing, 2005. 2019.

[10] Richard G. Budynas and J. Keith Nisbett. (2015). Shigley’s Mechanical Engineering Design. Tenth edit. New York: McGraw-Hill Education, 2 Penn Plaza, New York, NY 10121., 2015.

[11] “Unconfirmed 287199.crdownload.” 

[12] H. Patel, H. K. Patel, S. K. Dutta, P. Sahu, and K. Das. (2015). “Production of Electricity by the Method of Road Power Generation,” Int. J. Res., vol. 2, no. 5, pp. 636-640, 2015, [Online]. Available: http://edupediapublications.org/journals/index. php/ijr/article/view/2030.

[13] I. Mahmud. (2018). “Electrical Power Generation Using Footsteps,” Eur. Sci. Journal, ESJ, vol. 14, no. 21, p. 318, 2018, doi: 10.19044/esj.2018.v14n21p318.

[14] A. L. Gorle, A. V. Thawale, and L. H. Patil. (2018). “‘Literature Review on Electricity Generation using Speed Breaker,’” Ijarcce, vol. 7, no. 10, pp. 44-47, 2018, doi: 10.17148/ijarcce.2018.71010.

[15] B. S. Sarma, V. Jyothi, and D. Sudhir. (2014). “Design of Power Generation Unit Using Roller Mechanism,” IOSR J. Electr. Electron. Eng., vol. 9, no. 3, pp. 55-60, 2014, doi: 10.9790/1676-09315560.

[16] B. Swetha, L. Prasanna, N. T. Anjum, and R. Chandra. (2020). “Footstep Power Generation System,” Int. J. Mod. Trends Sci. Technol., vol. 6, no. 5, pp. 100-104, 2020, doi: 10.46501/ijmtst060517.

[17] A. Kumar, A. Kumar, D. Arockiaraj, and G. P. U.S. (2018). “Energy Harvesting Using Rack and Pinion Mechanism,” J. Mech. Civ. Eng., vol. 15, no. I, pp. 75-80, 2018, doi: 10.9790/1684-1501047580.

[18] G. Vamsi Krishna, S. Srinivasa Rao, P. Sriharsha, B. V. Neerav, and G. E. N. M. S. Satyasai. (2019). “Modeling and analysis of flat spiral spring based speed breaker device for generation of electricity,” Int. J. Recent Technol. Eng., vol. 8, no. 1, pp. 555-561, 2019.

[19] A. Mishra, et al. (2013). “Electricity Generation from Speed Breakers,” Int. J. Electr. Electron. Res. ISSN, vol. 4, no. 1, pp. 25-27, 2013, [Online]. Available: www.theijes.com.

[20] M. M. Durai. (2017). “Using Road Speed Breakers to Extract Electric Power,” Int. J. Adv. Res. Basic Eng. Sci. Technol., vol. 3, no. 24, pp. 464-470, 2017.

[21] J. E. Dara, C. M. Odazie, P. C. Okolie, and A. O. Azaka. (2020). “Design and construction of a double actuated mechanical speed breaker electricity generator,” Heliyon, vol. 6, no. 9, p. e04802, 2020, doi: 10.1016/j.heliyon.2020.e04802.

[22] K. Kolhe and A. Pandhare. (2017). “International Journal of Current Engineering and Technology Electric Power Generation System from Speed Breaker by using Rack and Pinion Mechanism,” 1151| Int. J. Curr. Eng. Technol., vol. 7, no. 3, pp. 1151-1158, 2017, [Online]. Available: http://inpressco.com/category/ijcet.

[23] M. Palanivendhan, S. Logeshwaran, G. Naresh, K. Ankush, A. Sidhaant, and S. Shivam. (2020). “Design and fabrication of speed bump for energy generation,” IOP Conf. Ser. Mater. Sci. Eng., vol. 993, no. 1, 2020, doi: 10.1088/1757-899X/993/1/012149.

[24] K. C. A. O. A. Olugboji, M. S. Abolarin, I. E. Ohiemi. (2016). “Development of a Speed Breaker Mechanism for Generating,” Proc. 2016 Annu. Conf. Sch. Eng. Eng. Technol., no. February, pp. 131-138, 2016.

[25] A. K. Singh. (2021). “Electricity Generation Through Speed Breaker Mechanism,” Strad Res., vol. 8, no. 5, 2021, doi: 10.37896/sr8.5/025.

[26] T. Krupenkin and J. A. Taylor. (2011). “Reverse electrowetting as a new approach to high-power energy harvesting,” Nat. Commun., vol. 2, no. 1, pp. 1-8, 2011, doi: 10.1038/ncomms1454.

[27] P. Bhagdikar, S. Gupta, N. Rana, R. Jegadeeshwaran, and B. Sciences. (2014). “G Eneration of E Lectricity With the Use of S Peed,” 2017 IEEE Int. Conf. Power, Control. Signals Instrum. Eng., vol. 7, no. 2, pp. 589-595, 2014.

[28] J. D. Jaymin. (2015). “Power Generation from Speed Breakers by Air Compression Method,” Int. J. Eng. Dev. Res., vol. 3, no. 2, pp. 75-80, 2015.

[29] J. Khurmi, R., Gupta, “machine design,” in international edition.

[30] H. Yang, S. Hong, B. Koo, D. Lee, and Y. B. Kim. (2017). “High-performance reverse electrowetting energy harvesting using atomic-layer-deposited dielectric film,” Nano Energy, vol. 31, pp. 450-455, 2017, doi: 10.1016/j.nanoen.2016.11.006.

[31] K. M. Ullah, K. M. Ahsan-Uz-zaman, S. Hosen, R. H. Khan, and S. Parvin. (2017). “Electrical power generation through speed breaker,” Proc. 9th Int. Conf. Electr. Comput. Eng. ICECE 2016, pp. 30-33, 2017, doi: 10.1109/ICECE.2016.7853848.

[32] T. H. Hsu, S. Manakasettharn, J. A. Taylor, and T. Krupenkin. (2015). “Bubbler: A Novel Ultra-High Power Density Energy Harvesting Method Based on Reverse Electrowetting,” Sci. Rep., vol. 5, pp. 1-13, 2015, doi: 10.1038/srep16537.

[33] S. M. Mahind. (2016). “Power Generation Through Foot Step,” Int. Eng. Res. J., vol. 2, no. 3, pp. 1009-1012, 2016.

[34] Anonymous. “Shaft (mechanical engineering.” https://en.m.wikipedia.org/wiki/Shaft_(mechanical_engineering) (accessed Aug. 25, 2018).

[35] Anonymous. “Ball Bearing.” https://en.m.wikipedia.org/wiki/Ball_bearing (accessed Jul. 25, 2018).

[36] Ametek. (2015). “What are the common spring materials (springs),” 2015. http://www.hunterspringandrell.com/support/faq/ what-are-the-common-spring-materials-springs (accessed Aug. 29, 2018).

[37] J. Richard, G., Nisbett. (2011). “No Title,” in mechanical engineering design, Ninth edit., 2011.

[38] F. Nwachinemelu and C. Anyaegbunam. (2016). “Power Generation from a Renewable Energy Source - Speed Breaker Generators,” no. June, pp. 1-5, 2016.

[39] N. Kachale. (2019). “Road Power Generation,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 7, no. 5, pp. 2761–2766, 2019, doi: 10.22214/ijraset.2019.5455.

[40] T. A. T. Aziz and M. S. Subri. (2019). “Footstep power generation using Arduino Uno,” AIP Conf. Proc., vol. 2129, no. July, 2019, doi: 10.1063/1.5118105.

[41] K. F. S. F. R. M. El Habrouk. (2019). “Speed Breaker Energy Harvester Using Roller Mechanism,” Int. J. Sci. Res., vol. 8, no. 1, pp. 598–605, 2019, [Online]. Available: https://www.ijsr.net/archive/v8i1/ART20194214.pdf.

[42] C. K. Ang, A. A. Al-Talib, S. M. Tai, and W. H. Lim. (2019). “Development of a footstep power generator in converting kinetic energy to electricity,” E3S Web Conf., vol. 80, pp. 10–13, 2019, doi: 10.1051/e3sconf/20198002001.

[43] G. Dhanalakshmi, T. Manjulai, M. Mirunalini, and S. Sangeetha Mary. (2017). “Footstep Power Generation System,” Int. J. Eng. Comput. Sci., 2017, doi: 10.18535/ijecs/v6i4.38.

[44] A. S. Fawade. (2015). “Air Compression and Electricity Generation by Using Speed Breaker with Rack And Pinion Mechanism,” Www.Ijmer.Com, vol. 5, pp. 23-28, 2015.

[45] A. A. Al Ahmadi, et al. (2018). “Power generation through road speed breakers—An experimental approach,” 2018 Adv. Sci. Eng. Technol. Int. Conf. ASET 2018, pp. 1-6, 2018, doi: 10.1109/ICASET.2018.8376796.

[46] M. S. Aljohani. (2020). “Mechanical Footstep power generator,” 2020.

How to cite this paper

Modeling and Design of a Prototype Footstep Power Generating Machine

How to cite this paper: Israel Enema Ohiemi, Nnorum Choice Obundah, Ugwuoke Cornelius Chinoso, Israel Ojo Enock, Kolo Yetu Babazhitsu, Ayuba Elkanah Jatau, Elvis Adam Alhassan. (2021). Modeling and Design of a Prototype Footstep Power Generating Machine. Engineering Advances1(2), 67-82.

DOI: http://dx.doi.org/10.26855/ea.2021.12.005