EA

Article http://dx.doi.org/10.26855/ea.2022.06.004

The Analytical Solution Via Cole-Hopf Transformation of the Unsteady MHD Equations of Salt Water Flow Subjected to Multiple Transport Effects

TOTAL VIEWS: 5434

Aly M. Abourabia1,*, Sara A. Abdel Moneim2

1Department of Mathematics, Faculty of Science, Menoufiya University, Shebin Elkom, 32511, Egypt.

2Department of Physics, Faculty of Science, Menoufiya University, Shebin Elkom, 32511, Egypt.

*Corresponding author: Aly M. Abourabia

Published: March 4,2022

Abstract

The purpose of this study is to examine the effect of MHD properties on the unsteady hydro-magnetic natural convection with heat transfer over an impulsively moving vertical plate embedded in salt water. The whole system rotates about an axis normal to the plane of the plate with uniform angular velocity. A variable applied magnetic field and Hall current affect the incompressible and optically thick fluid presented by sea water as the working fluid in our problem. A new manipulation as a single independent variable is introduced to reduce the system of ordinary differential equations by successive eliminations to one nonlinear ODE for the secondary velocity, under simple initial and boundary conditions, which is solved analytically using the Cole-Hopf transformation. Through this study, it was found that the resulting solutions include the non-dimensional temperature, primary and secondary velocities depend on different governing parameters.The results indicate that all these quantities are damped far from the rotating plate at different values of the governing parameters. From the irreversi-ble thermodynamic point of view, the entropy generation and Bejan numbers are estimated and illustrated under the same conditions. The results of this research may find its echo in different vital applications such as heat exchangers, Hall accelerators and power generators.

References

[1] Soundalgekar, V. M. and Uplekar, A. G. (1986). Hall Effects in MHD Couette Flow with Heat Transfer. IEEE Transactions on Plasma Science, 14(5), 579-583. doi: 10.1109/tps.1986.4316600.

[2] Attia, H. A. and Kotb, N. A. (1996). MHD flow between two parallel plates with heat transfer. ActaMechanica, 117(1-4), 215-220. doi:10.1007/bf01181049.

[3] Seth, G. S., Mahato, G. K., and Sarkar, S. (2013). MHD natural convection flow with radiative heat transfer past an impulsively moving vertical plate with ramped temperature in the presence of hall current and thermal diffusion. International Journal of Applied Mechanics and Engineering, 18(4), 1201-1220. doi: 10.2478/ijame-2013-0073.

[4] Burgers, J. M. (1958). Magnetohydrodynamics, by T. G. COWLING, New York: Interscience Publishers, Inc., 1957. 115 pp. $3.50. Journal of Fluid Mechanics, 3(05), 550. doi:10.1017/s0022112058220181.

[5] Viskanta, R. and Grosh, R. J. (1962). Boundary layer in thermal radiation absorbing and emitting media. International Journal of Heat and Mass Transfer, 5(9), 795-806. doi:10.1016/0017-9310(62)90180-1.

[6] Seth, G. S., Sarkar, S., and Hussain, S. M. (2014). Effects of Hall current, radiation and rotation on natural convection heat and mass transfer flow past a moving vertical plate. Ain Shams Engineering Journal, 5(2), 489-503. doi:10.1016/j.asej.2013.09.014.

[7] Musundi, S. M. Kirimi, J., and Muthondu, A. K. (2012). Magnetic Field and Hall Current Effect on MHD Free Convection Flow past a Vertical Rotating Flat Plate. Asian Journal of Current Engineering and Maths, Vol. 7, pp. 347-354.

[8] Cramer, K. R. (1973). New from McGraw-hill magneto fluid dynamics for engineers and applied physicists. Electrical Engineering in Japan, 93(1), 142-142. doi:10.1002/eej.4390930120.

[9] Gebhart, B. (1968). E. M. Sparrow and R. D. Cess, Radiation Heat Transfer. International Journal of Heat and Mass Transfer, 11(3), 619-620. doi:10.1016/0017-9310(68)90106-3.

[10] Hilliard Jr. (1960). Electromagnetic Radiation in Sea Water. Technical Report. Naval Underwater Ordnance Station Newport RI; (1960).

[11] Miškinis, P. (2012). A Generalization of the Hopf-Cole Transformation. Symmetry, Integrability and Geometry: Methods and Applications. doi:10.3842/sigma.2013.016.

[12] Vaganan, B. M. and Priya, E. E. (2015). Generalized Cole-Hopf transformations for generalized Burgers equations. Pramana, 85(5), 861-867. doi:10.1007/s12043-015-1107-4.

[13] Ali F. Abu-Bakr, Aly M. Abourabia. (2018). The Cole-Hopf transformation for solving Rayleigh-Plessetequation in bubble dynamics. Advances in Modelling and Analysis A, 55(2): 82-87.

[14] Eegunjobi, A. S. and Makinde, O. D. (2016). Entropy Analysis of Variable Viscosity Hartmann Flow through a Rotating Channel with Hall Effects. Applied Mathematics & Information Sciences, 10(4), 1415-1423. doi:10.18576/amis/100420.

[15] Bejan, A. (1982). Second-Law Analysis in Heat Transfer and Thermal Design. Advances in Heat Transfer, 1-58. doi: 10.1016/s0065-2717(08)70172-2.

[16] Cox, R. A., McCartney, M. J., and Culkin, F. (1970). The specific gravity/salinity/temperature relationship in natural sea water. Deep Sea Research and Oceanographic Abstracts, 17(4), 679-689. doi:10.1016/0011-7471(70)90034-3.

[17] Doss, E. and Roy, G. (1991). Flow characteristics inside MHD seawater thrusters. Journal of Propulsion and Power, 7(4), 635-641. doi:10.2514/3.23372.

[18] Pazur, A. K. H. (2014). Reduced heat transfer in saltwater by a magnetic field: do oceans have a “geomagnetic brake”? Geophysical & Astrophysical Fluid Dynamics, 108(5), 536-552. doi:10.1080/03091929.2014.934503.

How to cite this paper

The Analytical Solution Via Cole-Hopf Transformation of the Unsteady MHD Equations of Salt Water Flow Subjected to Multiple Transport Effects

How to cite this paper: Aly M. Abourabia, Sara A. Abdel Moneim. (2022). The Analytical Solution Via Cole-Hopf Transformation of the Unsteady MHD Equations of Salt Water Flow Subjected to Multiple Transport Effects. Engineering Advances2(1), 36-50.

DOI: http://dx.doi.org/10.26855/ea.2022.06.004