Location:Home / Journals / Article Detail

Advance in Biological Research


PDF Download

Striga Biology and Its Management in Maize: A Review

Nigus Belay

Field Crops Research Program, Ethiopian Institute of Agricultural Research, Holetta Research Center, Addis Ababa, Ethiopia.

*Corresponding author: Nigus Belay

Date: May 11,2022 Hits: 102


Striga spp., S. hermonthica (Del.) Benth. and S. asiatica (L.) Kuntze are obligate root hemi-parasites belong to the family Orobanchaceae and cause devastating yield losses in maize production in sub-Saharan Africa (SSA). Control of striga is difficult due to the ability of the parasite to produce large number of seeds that can remain viable in the soil for more than 15 year and complex nature of the host-parasite relationship. This review presents an update on the recent knowledge on Striga biology, life cycle and management options in maize. Striga life cyle is complex and generally involves germination, attachment to host, haustorial formation, penetration and establishment of vascular connections, accumulation of nutrients, flowering and seed production. A number of Striga management strategies, such as cultural and agronomic practices, chemical control, biological control, host resistance and integrated Striga management (ISM), have been proposed during the past decade. ISM approach, through integrating Striga-resistant maize cultivars with other control methods, is considered the most economical and affordable for small-scale farmers. Novel genetic approaches such as marker assisted breeding, targeted gene editing or mutation breeding and RNA interference (RNAi) may allow the development of Striga resistant maize genotypes.


[1] Badu-Apraku B., Adewale, S., Paterne, A., Gedil, M., Asiedu, R. (2020). Identification of QTLs controlling resistance/tolerance to Striga hermonthica in an extra-early maturing yellow maize population. Agronomy, 10(8): 1-18.

[2] Mageto, E. K., Makumbi, D., Njoroge, K., Nyankanga, R. (2017). Genetic analysis of early-maturing maize (Zea Mays L.) inbred lines under stress and non-stress conditions. Journal of Crop Improvement, 31(4): 560-588.

[3] Das, B., Atlin, G. N., Olsen, M., Burgueño, J., Tarekegne, A., et al. (2019). Identification of donors for low-nitrogen stress with maize lethal necrosis (MLN) tolerance for maize breeding in sub-Saharan Africa. Euphytica, 1: 215-280. 

[4] Sauerborn, J., Muller-Stover, D., Hershenhorn, J. (2007). The role of biological control in managing parasitic weeds. Crop Protection, 26: 246-254.

[5] Scholes, J. D., Press, M. C. (2008). Striga infestation of cereal cropsan unsolved problem in resource-limited agriculture. Curr Opin Plant Biol, 11: 180-186.

[6] Kanampiu, F. K., Ransom, J. K., Friesen, D., Gressel, J. (2002). Imazapyr and pyrithiobac movement in soil and from maize seed coats to control Striga in legume intercropping. Crop Prot, 21: 611-619.

[7] Ejeta, G. (2007). Breeding for Striga resistance in sorghum: exploitation of intricate host-parasite biology. Crop Sci, 47: 216-227.

[8] Rich, P. J., Ejeta, G. (2008). Towards effective resistance to Striga in African maize. Plant Signal Behav, 3: 618-621.

[9] Parker, C., Riches, C. R. (1993). Parasitic Weeds of the World: Biology and Control. CAB International, Wallingford, UK, p. 332.

[10] Tenebe, V. A., Kamara, H. M. (2002). Effect of Striga hermonthica on the growth characteristics of sorghum intercropped with groundnut varieties. J Agron Crop Sci, 188: 376-381.

[11] Frost, D. L., Gurney, A. L., Press, M. C., Scholes, J. D. (1997). Striga hermonthica reduces photosynthesis in sorghum: The importance of stomatal limitations and a potential role for ABA? Plant Cell Environ, 20: 483-492.

[12] Watling, J. R., Press, M. C. (2001). Impacts of infection by parasitic angiosperms on host photosynthesis. Plant Biol., 3(3): 244-250. 

[13] Kim, S. K. (1991). Breeding for striga tolerance and development of a field infestation technique. In Combating Striga in Africa, pp. 96-108, (Kim S.K., ed.), Proceeding of the International Workshop by IITA, ICRISAT, and IDRC, Ibadan, 22-24 August 1988, IITA, Ibadan, Nigeria.

[14] Bebawi, F. F., Eplee, R. E., Harris, C. E., Norris, R. S. (1984). Longevity of witchweed (Striga asiatica) seed. Weed Sci., 32: 494-497. 

[15] Aly, R. (2007). Conventional and biotechnological approaches for control of parasitic weeds. In Vitro Cell. Dev Biol Plant, 43: 304-317.

[16] Pageau, K., Simier, P., Naulet, N., Robins, R. J., Fer, A. (1998). Carbon dependency of the hemiparasite Striga hermonthica on Sorghum bicolour determined by carbon isotopic and gas exchange analyses. Austr J Plant Physiol, 25: 695-700.

[17] Spallek, T., Mutuku, J. M., Shirasu, K. (2013). The genus Striga: a witch profile. Mol Plant Pathol, 14: 861-869.

[18] Mohamed, K. I., Musselman, L. J., Riches, C. R. (2001). The genus Striga (Scrophulariaceae) in Africa. Ann Mo Bot Gard, 88: 60-103.

[19] Haussmann, B. I. G., Hess, D. E., Welz, H. G., Geiger, H. H. (2000). Improved methodologies for breeding Striga-resistant sorghums. Field Crops Res, 66: 195-211.

[20] Botanga, C. J., Kling, J. G., Berner, D. K., Timko, M. P. (2002). Genetic variability of Striga asiatica (L.) Kuntz based on AFLP analysis and host-parasite interaction. Euphytica, 128: 375-388.

[21] Hamrick, J. (1982). Plant population genetics and evolution. Am J Bot, 69 (10): 1685-1693.

[22] Muchira, N., Ngugi, K., Wamalwa, L. N., Avosa, M., Chepkorir, W., et al. (2021). Genotypic variation in cultivated and wild sorghum genotypes in response to Striga hermonthica infestation. Front Plant Sci, 12: 671-984.

[23] Sugimoto, Y. (2000). Germination stimulants for the seeds of root parasitic weeds. J Pestic Sci, 25: 438-440.

[24] Parker, C. (2012). Parasitic weeds: a world challenge. Weed Sci, 60: 269-276. 

[25] Gurney, A., Slate, J., Press, M., Scholes, J. (2006). A novel form of resistance in rice to the angiosperm parasite Striga hermonthica. New Phytol, 169: 199-208.

[26] Musselman, L. J. (1980). The biology of Striga, Orobanche, and other root-parasitic weeds. Annu Rev Phytopathol, 18: 463-489.

[27] Cardoso, C., Ruyter-Spira, C., Bouwmeester, H. J. (2011). Strigolactones and root infestation by plant-parasitic Striga, Orobanche and Phelipanche spp. Plant Sci, 180: 414-420.

[28] Uematsu, K., Nakajima, M., Yamaguchi, I., Yoneyama, K., and Fukui, Y. (2007). Role of cAMP in gibberellin promotion of seed ger-mination in Orobanche minor (Smith). Journal of Plant Growth Regulation, 26: 245-254.

[29] Bouwmeester, H. J., Matusova, R., Sun, Z. K., Beale, M. H. (2003). Secondary metabolite signalling in host-parasitic plant interactions. Curr Opin Plant Biol, 6: 358-364.

[30] Awad, A. A., Sato, D., Kusumoto, D., Kamioka, H., Takeuchi, Y., et al. (2006). Characterization of strigolactones, germination stimulants for the root parasitic plants Striga and Orobanche, produced by maize, millet and sorghum. Plant Growth Regul, 48: 221-227.

[31] Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T., et al. (2008). Inhibition of shoot branching by new terpenoid plant hormones. Nature, 455: 195-200.

[32] Xie, X. N., Yoneyama, K., Yoneyama, K. (2010). The Strigolactone story. Annu Rev Phytopathol, 48: 93-117.

[33] Wang, Y., Bouwmeester, H. J. (2018). Structural diversity in the strigolactones. J Exp Bot, 69: 2219-2230.

[34] Cook, C. E., Whichard, L. P., Wall, M., Egley, G. H., Coggon, P., et al. (1972). Germination stimulants. II. Structure of strigol, a potent seed germination stimulant for witchweed (Striga lutea). J Am Chem. Soc., 94: 6198-6199.

[35] Hauck, C., Muller, S., Schilknecht, H. (1992). A germination stimulant for parasitic plants from Sorghum bicolor, a genuine host plant. Plant Physiology, 139: 474-478.

[36] Bouwmeester, H., Li, C., Thiombiano, B., Rahimi, M., and Dong, L. (2021). Adaptation of the parasitic plant lifecycle: germination is controlled by essential host signaling molecules. Plant physiol, 185: 1292-1308.

[37] Yoshida, S., Cui, S., Ichihashi, Y., Shirasu, K. (2016). The haustorium, a specialized invasive organ in parasitic plants. Annu Rev Plant Biol, 67: 643-667.

[38] Losner-Goshen, D. (1998). Pectolytic activity by the haustorium of the parasitic plant Orobanche L. (Orobanchaceae) in host roots. Ann Bot, 81: 319-326

[39] Albrecht, H., Yoder, J. I., Phillips, D. A. (1999). Flavonoids promote haustoria formation in the root parasite Triphysaria. Plant Physiol, 119: 585-591.

[40] Yamaguchi, I., Cohen, J. D., Culler, A. H., Quint, M., Slovin, J. P., et al. (2010). Plant hormones. Comprehensive Natural Products II Chemistry and Biology, 4: 9-125.

[41] Sibhatu, B. (2016). Review on Striga weed management. Int J Life Sci Scienti Res., 2: 110-120.

[42] Schulz, S., Hussaini, M. A., Kling, J. G., Berner, D. K., Ikie, F. O. (2003). Evaluation of integrated Striga hermonthica control tech-nologies under farmer management. Exp Agric., 39: 99-108.

[43] Oswald, A., Ransom, J. K. (2001). Striga control and improved farm productivity using crop rotation. Crop Prot., 20: 113-120.

[44] Oswald, A., Ransom, J. K., Kroschel, J., Sauerborn, J. (1999). Developing a catch-cropping technique for small-scale subsistence farmers. In: Kroschel J, Mercer-Quarshie H, Sauerborn J (eds.), Advances in Parasitic Weed Control at On-farm Level. Vol. 1.Joint action to Control Striga in Africa. Margraf Verlag, Weikersheim, Germany, pp. 181-187.

[45] Rao, M. R., Gacheru, E. (1998). Prospects of agroforestry Striga management. Agroforestry Forum, 9(2): 22-27.

[46] Gacheru, E., Rao, M. R. (2005). The potential of planted shurub fallows to combat striga infestation on maize. International Journal of Pest Management, 52: 91-100. 

[47] Kanampiu, F., Makumbi, D., Mageto, E., Omanya, G., Waruingi, S., et al. (2018). Assessment of management options on striga infestation and maize grain yield in Kenya. Weed Science, 66: 516-524. 

[48] Oswald, A., Ransom, J. K., Kroschel, J., Sauerborn, J. (2002). Intercropping controls striga in maize based farming systems. Crop Prot, 21: 367-374.

[49] Kuchinda, N. C., Kureh, I., Tarfa, B. D., Shinggu, C., Omolehin, R. (2003). On-farm evaluation of improved maize varieties intercropped with some legumes in the control of Striga in the Northern Guinea savanna of Nigeria. Crop Prot, 22: 533-538.

[50] Midega, C. A., Wasonga, C. J., Hooper, A. M., Pickett, J. A., Khan, Z. R. (2017). Drought-tolerant Desmodium species effectively suppress parasitic Striga weed and improve cereal grain yields in western Kenya. Crop Prot, 98: 94-101.

[51] Khan, Z. R., Pickett, J. A., Wadhams, L. J., Hassanali, A., Midega, C. A. O. (2008). Desmodium species and associated biochemical traits for controlling Striga species: present and future prospects. Weed Res., 48: 302-306.

[52] Midega, C. A. O., Salifu, D., Bruce, T. J., Pittchar, J., Pickett, J. A., et al. (2014). Cumulative effects and economic benefits of inter-cropping maize with food legumes on Striga hermonthica infestation. Field Crops Research, 155: 144-152.

[53] Vanlauwe, B., Ramisch, J. J., Sanginga, N. (2006). Integrated soil fertility management in Africa: from knowledge to implementation. Biol. Approaches Sustainable Soil Syst., 113: 257-272. 

[54] Vanlauwe, B., Kanampiu, F., Odhiambo, G. D., De Groote, H., Wadhams, L. J., et al. (2008). Integrated management of Striga hermonthica, stemborers, and declining soil fertility in western Kenya. Field Crops Res., 107: 102-115.

[55] Adagba, M. A., Lagoke, S. T. O., Imolehin, E. D. (2002). Nitrogen effect on the incidence of Striga hermonthica (Del.) Benth in upland rice. Acta Agronomica Hungarica, 50: 145-150.

[56] Jamil, M., Charnikhova, T., Cardoso, C., Jamil, T., Ueno, K., Verstappen, F., Asami, T., Bouwmeester, H. J. (2011). Quantification of the relationship between strigolactones and Striga hermonthica infection in rice under varying levels of nitrogen and phosphorus. Weed Res., 51: 373-385.

[57] Jamil, M., Kanampiu, F. K., Karaya, H., Charnikhova, T., Bouwmeester, H. J. (2012). Striga hermonthica parasitism in maize in response to N and P fertilizers. Field Crops Res., 134: 1-10.

[58] Odhiambo, G. D., Ransom, J. K. (1997). On-farm evaluation of an integrated approach to Striga control in western Kenya. African Crop Science Conference Proceedings Conference, 3: 887-893.

[59] Pare, J., Ouedraogo, B., Dembele, G., Salle, G., Raynal-Roques, A., et al. (1996). Embryological studies as an efficient strategy to control production of Striga seeds. In: Moreno MT, Cubero IT, Berner D, Joel DM, Musselman LJ, et al. (eds), Advances in Parasitic Plant Research. Proc. 6th Parasitic Weed Symposium. Cordoba, Spain. Pp. 203-209.

[60] Verkleij, J. A. C., Kuiper, E. (2000). Various approaches to controlling root parasitic weeds. Biotechnol Dev Monit, 41: 16-19.

[61] Makumbi, D., Kanampiu, F., Mugo, S., Karaya, H. (2015). Agronomic performance and genotype × environment interaction of herbicide-resistant maize varieties in Eastern Africa. Crop Sci, 55: 540-555.

[62] Zwanenburg, B., Mwakaboko, A. S., Kannan, C. (2016). Suicidal ger‐mination for parasitic weed control. Pest Management Science, 72: 2016-2025.

[63] Eplee, R. E. (1975). Ethylene: A witchweed seed germination stimulant. Weed Science, 23: 433-436.

[64] Johnson, A. W., Roseberry, G., Parker, C. (1976). A novel approach to Striga and Orobanche control using synthetic germination stimulants. Weed Res., 16: 223-227.

[65] Rebeka, G., Shimelis, H., Laing, M. D., Tongoona, P., Mandefro, N. (2013). Evaluation of sorghum genotypes compatibility with Fu-sarium oxysporum under Striga infestation. Crop Sci, 53: 385-393.

[66] Ciotola, M., Ditommaso, A., and Watson, A. K. (2000). Chlamydospore production, inoculation methods and pathogenicity of Fusarium oxysporum M12-4A, a biocontrol for Striga hermonthica. Biocontrol Sci. Technol, 10: 129-145. 

[67] Marley, P. S., Shebayan, J. A. Y. (2005). Field assessment of Fusarium oxysporum based mycoherbicide for control of Striga hermonthica in Nigeria. Biocontrol, 50: 398-399. 

[68] Venne, J., Beed, F., Avocanhy, A., Watson, A. (2009). Integrating Fusarium oxysporum f. sp. strigae into cereal cropping systems in Africa. Pest Manag Sci., 65: 572-580. 

[69] Schaub, B., Marley, P., Elzein, A., Kroschel, J. (2006). Field evaluation of an integrated Striga hermonthica management in Sub-Saharan Africa: synergy between Striga-mycoherbicides (biocontrol) and sorghum and maize resistant varieties. J Plant Dis Prot., 20: 691-699.

[70] Mandumbu, R., Mutengwa, C., Mabasa, S., Mwenje, E. (2019). Challenges to the exploitation of host plant resistance for Striga man-agement in cereals and legumes by farmers in sub-Saharan Africa: a review. Acta Agric Scand B Soil Plant Sci., 69: 82-88.

[71] Kim, S. K. (1994). Genetics of maize tolerance of Striga hermonthica. Crop Science, 34: 900-907.

[72] Amusan, I. O., Rich, P. J., Menkir, A., Housley, T., Ejeta, G. (2008). Resistance to Striga hermonthica in a maize inbred line derived from Zea diploperennis. New Phytologist, 178(1): 157-166. 

[73] Mutinda, S. M., Masanga, J., Mutuku, J. M., Runo, S., Alakonya, A. (2018). KSTP 94, an open-pollinated maize variety has postattachment resistance to purple witchweed (Striga hermonthica). Weed Science, 66(4): 525-529. 

[74] Fishman, M. R., Shirasu, K. (2021). How to resist parasitic plants: pre- and post-attachment strategies. Curr Opin Plant Biol, 62: 102004.

[75] Yoder, J. I., Scholes, J. D. (2010). Host plant resistance to parasitic weeds; recent progress and bottlenecks. Curr Opin Plant Biol., 13: 478-484.

[76] Karaya, H., Kiarie, N., Mugo, S., Kanampiu, F., Ariga, E., et al. (2012). Identification of new maize inbred lines with resistance to Striga hermonthica (Del.) Benth. J Crop Prot., 1 (2): 131-142.

[77] Yoneyama, K., Arakawa, R., Ishimoto, K., Kim, H. I., Kisugi, T., et al. (2015). Difference in Striga-susceptibility is reflected in strigo-lactone secretion profile, but not in compatibility and host preference in arbuscular mycorrhizal symbiosis in two maize cultivars. New Phytol, 206: 983-989.

[78] Rispail, N., Dita, M. A., Gonzalez-Verdejo, C., P´erez-de-Luque, A, Castillejo, M. A., et al. (2007). Plant resistance to parasitic plants: molecular approaches to an old foe. New Phytol, 173: 703-712.

[79] Adewale, S. A., Badu-Apraku, B., Akinwale, R. O., Paterne, A. A., Gedil, M., et al. (2020). Genome-wide association study of Striga resistance in early maturing white tropical maize inbred lines. BMC Plant Biol., 20: 1-16.

[80] Kirigia, D., Runo, S., Alakonya, A. (2014). A virus-induced gene silencing (VIGS) system for functional genomics in the parasitic plant Striga hermonthica. Plant Methods, 10(16): 1-8.

[81] Joel, D. M. (2000). The long-term approach to parasitic weeds control: manipulation of specific developmental mechanisms of the parasite. Crop Prot, 19: 753-758.

[82] Mrema, E., Shimelis, H., Laing, M. (2020). Combining ability of yield and yield components among Fusarium oxysporum f. sp. Strigae-compatible and Striga-resistant sorghum genotypes. Acta Agric Scand B Soil Plant Sci., 70: 95-108.

[83] Kamara, A. Y., Menkir, A., Chikoye, D., Solomon, R., Tofa, A. I., Omoigui, L. O. (2020). Seed dressing maize with imazapyr to control Striga hermonthica in farmers’ fields in the savannas of Nigeria. Agriculture Basel, 10: 1-9.

[84] Abdallah, B., Saha, H., Tsanuo, M. (2015). Control of Striga asiatica through the integration of legume cover crops and Striga resistant maize. Int J Pure Appl Sci Technol, 29: 42-53.

Full-Text HTML

Striga Biology and Its Management in Maize: A Review

How to cite this paper: Nigus Belay. (2022) Striga Biology and Its Management in Maize: A Review. Advance in Biological Research3(1), 16-25.

DOI: http://dx.doi.org/10.26855/abr.2022.05.001