Location:Home / Journals / Article Detail

Engineering Advances

DOI:http://dx.doi.org/10.26855/ea.2022.06.012

PDF Download

Numerical Investigation of Adiabatic Film Cooling Effectiveness over Flat Plate with Barchan Dune Shape Ramp Configuration

Grine Mustapha1,*, Ben Ali Kouchih Fatima2, Khadidja Boualem2, Azzi Abbès2

1ELM Department, Institute of Maintenance and Industrial Safety, Oran 2 University, Oran, Algeria.

2Laboratoire Aero Hydrodynamique Navale, (LAHN) USTO-MB, Oran, Algeria.

*Corresponding author: Grine Mustapha

Date: June 24,2022 Hits: 255

Abstract

In this study, the effect of low and high blowing ratios on film cooling efficiency over a flat plate with Barchan Dune Shape Ramp is presented. The blowing ratios considered in this paper are, M=0.25, 0.5, 0.85, 1.0 and 1.5. The concept of the Barchan Dune Shape Ramp (BDSR) can generate anti-counter rotating vortices (anti-CRV) that’s help in the distribution of coolant flow. The BDSR located up-stream of the injection hole. All cases are simulated using the commercial soft-ware ANSYS CFX 16. The k-ε RNG is utilized as a closure model for the averaged Navier Stokes equations. The validation of current calculations is made by comparison with experimental data found in the literature. The main result of this study reveals that the use of BDSR is limited for blowing ratios less than one.

References

[1] F. Ebacher. (2017). “Analyse du refroidissement par film de la paroi de bout de pales d’une turbine en céramique à configuration renversée” (Film cooling analysis of the blade end wall of an inverted ceramic turbine). M.Sc. Theses, 2017.

[2] Goldstein, R. J., Eckert, E. R. G., Eriksen, V. L., and Ramsey, J. W. (1970). “Film Cooling Following Injection Through Inclined Circular Tubes.” Israel Journal of Technology, Vol. 8, No. 1-2, pp. 145-154.

[3] Mehendale, A. B., Han, J. C., and Ou, S. (1991). “Influence of High Mainstream Turbulence on Leading Edge Heat Transfer.” ASME Journal of Heat Transfer, Vol. 113, November 1991, pp. 843-850.

[4] Honami, S., Shizawa, T., and Uchiyama, A. (1994). “Behavior of the Laterally Injected Jet in Film Cooling: Measurements of Surface Temperature and Velocity/Temperature Field Within the Jet.” ASME Journal of Turbomachinery, Vol. 116, pp. 106-112.

[5] Schmidt, D. L., Sen, B. (1996). “Film Cooling with Compound Angle Holes: Adiabatic Effectiveness.” ASME Journal of Turbomachinery, Vol. 118, pp. 807-813. 

[6] Ligrani, P. M., Wigle, J. M., Ciriello, S., and Jackson, S. W. (1994). “Film-cooling From Holes with Compound Angle Orientations: Part 1- Results Downstream of Two Staggered Rows of Holes with 3d Spanwise Spacing.” ASME Journal of Heat Transfer, Vol. 116, No. 2, 1994, pp. 341-352.

[7] Ligrani, P. M., Wigle, J. M., and Jackson, S. W. (1994). “Film-cooling From Holes with Compound Angle Orientations: Part 2- Results Downstream of a Single Row of Holes with 6d Spanwise Spacing.” ASME Journal of Heat Transfer, Vol. 116, No. 2, 1994, pp. 353-362. 

[8] Bunker, R. S. (2002). Film Cooling Effectiveness Due to Discrete Holes Within Transverse Surface Slots, Proceedings IGTI Turbo Expo, Amsterdam, The Netherlands, ASME Paper No.GT-2002-30178.

[9] S. Baheri and B. A. Jubran. (2012). The Effect of Turbulence Intensity on Film Cooling of Gas Turbine Blade from Trenched Shaped Holes. J. Heat & Mass Transfer, 05/2012, 48(5).

[10] Wang, T., Chintalapati, S., Bunker, R.S., and Lee, C. P. (2000). “Jet Mixing in a Slot.” Experimental Thermal and Fluid Science, Vol. 22, pp. 1-17.

[11] Lu, Y., Nasir, H., and Ekkad, S.V. (2005). “Film Cooling from a Row of Holes Embedded in Transverse Slots.” ASME Paper IGTI2005-68598.

[12] Kebir, F. and Azzi, A. (2018). Study of wave number effect in wavy plate for improving the film cooling effectiveness at spanwise direction. Numerical Heat Transfer, Part A: Applications, 73(6), 408-427.

[13] Ben Ali Kouchih, F., Boualem, K., Grine, M., and Azzi, A. (2020). The Effect of an Upstream Dune-Shaped Shells on Forward and Backward Injection Hole Film Cooling. Journal of Heat Transfer, 142(12), 122302.

[14] Gritsch, M., Schulz, A., and Wittig, S. (1998). “Heat Transfer Coefficient Measurements of Film Cooling Holes with Expanded Slots.” American Society of Mechanical Engineers, ASMEPaper 98-GT-28, June 1998.

[15] Gritsch, M., Schulz, A., and Wittig, S. (2016). “Adiabatic Wall Effectiveness Measurements of Film Cooling Holes with Expanded Exits.” ASME Journal of Turbomachinery, Vol. 120, No. 3, 1998, pp. 549-556. Han, C., Chi, Z., Ren, J., and Jiang, H. (2016). GT2013-94561. 1-11.

[16] Hassan, H. and Abdullah, K. (2017). Combined-hole film cooling with the application of double flow control devices. MATEC Web of Conferences, 135, 1-9. 

[17] Wang, J., Tian, K., Luo, J., and Sundén, B. (2019). Effect of hole configurations on film cooling performance. Numerical Heat Transfer; Part A: Applications, 75(11), 725.

[18] Zaman, K., Rigby, D., and Heidmann, J. (2010). “Experimental Study of an Inclined Jet-in-Cross-Flow Interacting with a Vortex Generator.” AIAA Paper No. 2010-88.

[19] Shinn, A. F. and Vanka, S. P. (2013). “Large Eddy Simulations of Film-Cooling Flows with a Micro-Ramp Vortex Generator.” ASME J. Turbomach., 135(1), p. 011004.

[20] Zhou, W. and Hu, H. (2016). “Improvements of Film Cooling Effectiveness by Using Barchan Dune Shaped Ramps.” Int. J. Heat Mass Transfer, 103, pp. 443-456.

[21] Zhou, W., and Hu, H. (2017). “A Novel Sand-Dune-Inspired Design for Improved Film Cooling Performance.” Int. J. Heat Mass Transfer, 110, pp. 908-920.

[22] Zhang, X. Z. and Hassan, I. (2006). Film cooling effectiveness for an advanced-louver cooling scheme for gas turbines. Journal of Thermophysics and Heat Transfer, 20(4), 754-763.

[23] T. F. Frict and A. Roshko. (1994). Vortical structure in the wake of a transverse jet. J Fluid Mech, pp. 1-47 (1994).

[24] MilošIlak, Philipp Schlatter, Shervin Bagheri, and Dan, S. (2012). Henningson, Bifurcation and stability analysis of a jet in crossflow: onset of global instability at a low velocity ratio, pp. 94-121, 2012.

[25] D. R. Getsinger, L. Gevorkyan, O. I. Smith, and A. R. Karagozian. (2014). Structural and stability characteristics of jets in crossflow. J. Fluid Mech., vol. 760, pp. 342-367, 2014.

[26] Sinha, D. Bogard and N. Crawford. (1991). Film Cooling Effectiveness Downstream of a Single Row of Holes with Variable Density Ratio. J. Turbomach., vol. 113, pp. 442-449, 1991.

Full-Text HTML

Numerical Investigation of Adiabatic Film Cooling Effectiveness over Flat Plate with Barchan Dune Shape Ramp Configuration

How to cite this paper: Grine Mustapha, Ben Ali Kouchih Fatima, Khadidja Boualem, Azzi Abbès. (2022). Numerical Investigation of Adiabatic Film Cooling Effectiveness over Flat Plate with Barchan Dune Shape Ramp ConfigurationEngineering Advances2(1), 128-140.

DOI: http://dx.doi.org/10.26855/ea.2022.06.012